1060 lines
30 KiB
C++
1060 lines
30 KiB
C++
#include "CC1101.h"
|
|
#if !defined(RADIOLIB_EXCLUDE_CC1101)
|
|
|
|
CC1101::CC1101(Module* module) : PhysicalLayer(RADIOLIB_CC1101_FREQUENCY_STEP_SIZE, RADIOLIB_CC1101_MAX_PACKET_LENGTH) {
|
|
_mod = module;
|
|
}
|
|
|
|
Module* CC1101::getMod() {
|
|
return(_mod);
|
|
}
|
|
|
|
int16_t CC1101::begin(float freq, float br, float freqDev, float rxBw, int8_t power, uint8_t preambleLength) {
|
|
// set module properties
|
|
_mod->SPIreadCommand = RADIOLIB_CC1101_CMD_READ;
|
|
_mod->SPIwriteCommand = RADIOLIB_CC1101_CMD_WRITE;
|
|
_mod->init();
|
|
_mod->pinMode(_mod->getIrq(), INPUT);
|
|
|
|
// try to find the CC1101 chip
|
|
uint8_t i = 0;
|
|
bool flagFound = false;
|
|
while((i < 10) && !flagFound) {
|
|
int16_t version = getChipVersion();
|
|
if((version == RADIOLIB_CC1101_VERSION_CURRENT) || (version == RADIOLIB_CC1101_VERSION_LEGACY) || (version == RADIOLIB_CC1101_VERSION_CLONE)) {
|
|
flagFound = true;
|
|
} else {
|
|
#if defined(RADIOLIB_DEBUG)
|
|
RADIOLIB_DEBUG_PRINT(F("CC1101 not found! ("));
|
|
RADIOLIB_DEBUG_PRINT(i + 1);
|
|
RADIOLIB_DEBUG_PRINT(F(" of 10 tries) RADIOLIB_CC1101_REG_VERSION == "));
|
|
|
|
char buffHex[7];
|
|
sprintf(buffHex, "0x%04X", version);
|
|
RADIOLIB_DEBUG_PRINT(buffHex);
|
|
RADIOLIB_DEBUG_PRINT(F(", expected 0x0004/0x0014"));
|
|
RADIOLIB_DEBUG_PRINTLN();
|
|
#endif
|
|
_mod->delay(10);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
if(!flagFound) {
|
|
RADIOLIB_DEBUG_PRINTLN(F("No CC1101 found!"));
|
|
_mod->term();
|
|
return(RADIOLIB_ERR_CHIP_NOT_FOUND);
|
|
} else {
|
|
RADIOLIB_DEBUG_PRINTLN(F("M\tCC1101"));
|
|
}
|
|
|
|
// configure settings not accessible by API
|
|
int16_t state = config();
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// configure publicly accessible settings
|
|
state = setFrequency(freq);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// configure bitrate
|
|
state = setBitRate(br);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// configure default RX bandwidth
|
|
state = setRxBandwidth(rxBw);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// configure default frequency deviation
|
|
state = setFrequencyDeviation(freqDev);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// configure default TX output power
|
|
state = setOutputPower(power);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// set default packet length mode
|
|
state = variablePacketLengthMode();
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// configure default preamble length
|
|
state = setPreambleLength(preambleLength);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// set default data shaping
|
|
state = setDataShaping(RADIOLIB_SHAPING_NONE);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// set default encoding
|
|
state = setEncoding(RADIOLIB_ENCODING_NRZ);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// set default sync word
|
|
state = setSyncWord(0x12, 0xAD, 0, false);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// flush FIFOs
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_RX);
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_TX);
|
|
|
|
return(state);
|
|
}
|
|
|
|
int16_t CC1101::transmit(uint8_t* data, size_t len, uint8_t addr) {
|
|
// calculate timeout (5ms + 500 % of expected time-on-air)
|
|
uint32_t timeout = 5000000 + (uint32_t)((((float)(len * 8)) / (_br * 1000.0)) * 5000000.0);
|
|
|
|
// start transmission
|
|
int16_t state = startTransmit(data, len, addr);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// wait for transmission start or timeout
|
|
uint32_t start = _mod->micros();
|
|
while(!_mod->digitalRead(_mod->getIrq())) {
|
|
_mod->yield();
|
|
|
|
if(_mod->micros() - start > timeout) {
|
|
finishTransmit();
|
|
return(RADIOLIB_ERR_TX_TIMEOUT);
|
|
}
|
|
}
|
|
|
|
// wait for transmission end or timeout
|
|
start = _mod->micros();
|
|
while(_mod->digitalRead(_mod->getIrq())) {
|
|
_mod->yield();
|
|
|
|
if(_mod->micros() - start > timeout) {
|
|
finishTransmit();
|
|
return(RADIOLIB_ERR_TX_TIMEOUT);
|
|
}
|
|
}
|
|
|
|
return(finishTransmit());
|
|
}
|
|
|
|
int16_t CC1101::receive(uint8_t* data, size_t len) {
|
|
// calculate timeout (500 ms + 400 full max-length packets at current bit rate)
|
|
uint32_t timeout = 500000 + (1.0/(_br*1000.0))*(RADIOLIB_CC1101_MAX_PACKET_LENGTH*400.0);
|
|
|
|
// start reception
|
|
int16_t state = startReceive();
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// wait for packet or timeout
|
|
uint32_t start = _mod->micros();
|
|
while(!_mod->digitalRead(_mod->getIrq())) {
|
|
_mod->yield();
|
|
|
|
if(_mod->micros() - start > timeout) {
|
|
standby();
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_RX);
|
|
return(RADIOLIB_ERR_RX_TIMEOUT);
|
|
}
|
|
}
|
|
|
|
// read packet data
|
|
return(readData(data, len));
|
|
}
|
|
|
|
int16_t CC1101::standby() {
|
|
// set idle mode
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE);
|
|
|
|
// set RF switch (if present)
|
|
_mod->setRfSwitchState(LOW, LOW);
|
|
return(RADIOLIB_ERR_NONE);
|
|
}
|
|
|
|
int16_t CC1101::transmitDirect(uint32_t frf) {
|
|
return transmitDirect(true, frf);
|
|
}
|
|
|
|
int16_t CC1101::transmitDirectAsync(uint32_t frf) {
|
|
return transmitDirect(false, frf);
|
|
}
|
|
|
|
int16_t CC1101::transmitDirect(bool sync, uint32_t frf) {
|
|
// set RF switch (if present)
|
|
_mod->setRfSwitchState(LOW, HIGH);
|
|
|
|
// user requested to start transmitting immediately (required for RTTY)
|
|
if(frf != 0) {
|
|
SPIwriteRegister(RADIOLIB_CC1101_REG_FREQ2, (frf & 0xFF0000) >> 16);
|
|
SPIwriteRegister(RADIOLIB_CC1101_REG_FREQ1, (frf & 0x00FF00) >> 8);
|
|
SPIwriteRegister(RADIOLIB_CC1101_REG_FREQ0, frf & 0x0000FF);
|
|
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_TX);
|
|
}
|
|
|
|
// activate direct mode
|
|
int16_t state = directMode(sync);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// start transmitting
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_TX);
|
|
return(state);
|
|
}
|
|
|
|
int16_t CC1101::receiveDirect() {
|
|
return receiveDirect(true);
|
|
}
|
|
|
|
int16_t CC1101::receiveDirectAsync() {
|
|
return receiveDirect(false);
|
|
}
|
|
|
|
int16_t CC1101::receiveDirect(bool sync) {
|
|
// set RF switch (if present)
|
|
_mod->setRfSwitchState(HIGH, LOW);
|
|
|
|
// activate direct mode
|
|
int16_t state = directMode(sync);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// start receiving
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_RX);
|
|
return(RADIOLIB_ERR_NONE);
|
|
}
|
|
|
|
int16_t CC1101::packetMode() {
|
|
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, RADIOLIB_CC1101_CRC_AUTOFLUSH_OFF | RADIOLIB_CC1101_APPEND_STATUS_ON | RADIOLIB_CC1101_ADR_CHK_NONE, 3, 0);
|
|
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_WHITE_DATA_OFF | RADIOLIB_CC1101_PKT_FORMAT_NORMAL, 6, 4);
|
|
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_CRC_ON | _packetLengthConfig, 2, 0);
|
|
return(state);
|
|
}
|
|
|
|
void CC1101::setGdo0Action(void (*func)(void), RADIOLIB_INTERRUPT_STATUS dir) {
|
|
_mod->attachInterrupt(RADIOLIB_DIGITAL_PIN_TO_INTERRUPT(_mod->getIrq()), func, dir);
|
|
}
|
|
|
|
void CC1101::clearGdo0Action() {
|
|
_mod->detachInterrupt(RADIOLIB_DIGITAL_PIN_TO_INTERRUPT(_mod->getIrq()));
|
|
}
|
|
|
|
void CC1101::setGdo2Action(void (*func)(void), RADIOLIB_INTERRUPT_STATUS dir) {
|
|
if(_mod->getGpio() != RADIOLIB_NC) {
|
|
return;
|
|
}
|
|
_mod->pinMode(_mod->getGpio(), INPUT);
|
|
_mod->attachInterrupt(RADIOLIB_DIGITAL_PIN_TO_INTERRUPT(_mod->getGpio()), func, dir);
|
|
}
|
|
|
|
void CC1101::clearGdo2Action() {
|
|
if(_mod->getGpio() != RADIOLIB_NC) {
|
|
return;
|
|
}
|
|
_mod->detachInterrupt(RADIOLIB_DIGITAL_PIN_TO_INTERRUPT(_mod->getGpio()));
|
|
}
|
|
|
|
int16_t CC1101::startTransmit(uint8_t* data, size_t len, uint8_t addr) {
|
|
// check packet length
|
|
if(len > RADIOLIB_CC1101_MAX_PACKET_LENGTH) {
|
|
return(RADIOLIB_ERR_PACKET_TOO_LONG);
|
|
}
|
|
|
|
// set mode to standby
|
|
standby();
|
|
|
|
// flush Tx FIFO
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_TX);
|
|
|
|
// set GDO0 mapping
|
|
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG0, RADIOLIB_CC1101_GDOX_SYNC_WORD_SENT_OR_RECEIVED);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// data put on FIFO.
|
|
uint8_t dataSent = 0;
|
|
|
|
// optionally write packet length
|
|
if (_packetLengthConfig == RADIOLIB_CC1101_LENGTH_CONFIG_VARIABLE) {
|
|
|
|
// enforce variable len limit.
|
|
if (len > RADIOLIB_CC1101_MAX_PACKET_LENGTH - 1) {
|
|
return (RADIOLIB_ERR_PACKET_TOO_LONG);
|
|
}
|
|
|
|
SPIwriteRegister(RADIOLIB_CC1101_REG_FIFO, len);
|
|
dataSent += 1;
|
|
}
|
|
|
|
// check address filtering
|
|
uint8_t filter = SPIgetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, 1, 0);
|
|
if(filter != RADIOLIB_CC1101_ADR_CHK_NONE) {
|
|
SPIwriteRegister(RADIOLIB_CC1101_REG_FIFO, addr);
|
|
dataSent += 1;
|
|
}
|
|
|
|
// fill the FIFO.
|
|
uint8_t initialWrite = min((uint8_t)len, (uint8_t)(RADIOLIB_CC1101_FIFO_SIZE - dataSent));
|
|
SPIwriteRegisterBurst(RADIOLIB_CC1101_REG_FIFO, data, initialWrite);
|
|
dataSent += initialWrite;
|
|
|
|
// set RF switch (if present)
|
|
_mod->setRfSwitchState(LOW, HIGH);
|
|
|
|
// set mode to transmit
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_TX);
|
|
|
|
// keep feeding the FIFO until the packet is over.
|
|
while (dataSent < len) {
|
|
// get number of bytes in FIFO.
|
|
uint8_t bytesInFIFO = SPIgetRegValue(RADIOLIB_CC1101_REG_TXBYTES, 6, 0);
|
|
|
|
// if there's room then put other data.
|
|
if (bytesInFIFO < RADIOLIB_CC1101_FIFO_SIZE) {
|
|
uint8_t bytesToWrite = min((uint8_t)(RADIOLIB_CC1101_FIFO_SIZE - bytesInFIFO), (uint8_t)(len - dataSent));
|
|
SPIwriteRegisterBurst(RADIOLIB_CC1101_REG_FIFO, &data[dataSent], bytesToWrite);
|
|
dataSent += bytesToWrite;
|
|
} else {
|
|
// wait for radio to send some data.
|
|
/*
|
|
* Does this work for all rates? If 1 ms is longer than the 1ms delay
|
|
* then the entire FIFO will be transmitted during that delay.
|
|
*
|
|
* TODO: test this on real hardware
|
|
*/
|
|
delayMicroseconds(250);
|
|
}
|
|
}
|
|
|
|
return (state);
|
|
}
|
|
|
|
int16_t CC1101::finishTransmit() {
|
|
// set mode to standby to disable transmitter/RF switch
|
|
int16_t state = standby();
|
|
|
|
// flush Tx FIFO
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_TX);
|
|
|
|
return(state);
|
|
}
|
|
|
|
int16_t CC1101::startReceive() {
|
|
// set mode to standby
|
|
standby();
|
|
|
|
// flush Rx FIFO
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_RX);
|
|
|
|
// set GDO0 mapping: Asserted when RX FIFO > 4 bytes.
|
|
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG0, RADIOLIB_CC1101_GDOX_RX_FIFO_FULL_OR_PKT_END);
|
|
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_FIFOTHR, RADIOLIB_CC1101_FIFO_THR_TX_61_RX_4, 3, 0);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// set RF switch (if present)
|
|
_mod->setRfSwitchState(HIGH, LOW);
|
|
|
|
// set mode to receive
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_RX);
|
|
|
|
return(state);
|
|
}
|
|
|
|
int16_t CC1101::readData(uint8_t* data, size_t len) {
|
|
// get packet length
|
|
size_t length = getPacketLength();
|
|
if((len != 0) && (len < length)) {
|
|
// user requested less data than we got, only return what was requested
|
|
length = len;
|
|
}
|
|
|
|
// check address filtering
|
|
uint8_t filter = SPIgetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, 1, 0);
|
|
if(filter != RADIOLIB_CC1101_ADR_CHK_NONE) {
|
|
SPIreadRegister(RADIOLIB_CC1101_REG_FIFO);
|
|
}
|
|
|
|
uint8_t bytesInFIFO = SPIgetRegValue(RADIOLIB_CC1101_REG_RXBYTES, 6, 0);
|
|
size_t readBytes = 0;
|
|
uint32_t lastPop = millis();
|
|
|
|
// keep reading from FIFO until we get all the packet.
|
|
while (readBytes < length) {
|
|
if (bytesInFIFO == 0) {
|
|
if (millis() - lastPop > 5) {
|
|
// readData was required to read a packet longer than the one received.
|
|
RADIOLIB_DEBUG_PRINTLN(F("No data for more than 5mS. Stop here."));
|
|
break;
|
|
} else {
|
|
delay(1);
|
|
bytesInFIFO = SPIgetRegValue(RADIOLIB_CC1101_REG_RXBYTES, 6, 0);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// read the minimum between "remaining length" and bytesInFifo
|
|
uint8_t bytesToRead = min((uint8_t)(length - readBytes), bytesInFIFO);
|
|
SPIreadRegisterBurst(RADIOLIB_CC1101_REG_FIFO, bytesToRead, &(data[readBytes]));
|
|
readBytes += bytesToRead;
|
|
lastPop = millis();
|
|
|
|
// Get how many bytes are left in FIFO.
|
|
bytesInFIFO = SPIgetRegValue(RADIOLIB_CC1101_REG_RXBYTES, 6, 0);
|
|
}
|
|
|
|
// check if status bytes are enabled (default: RADIOLIB_CC1101_APPEND_STATUS_ON)
|
|
bool isAppendStatus = SPIgetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, 2, 2) == RADIOLIB_CC1101_APPEND_STATUS_ON;
|
|
|
|
// for some reason, we need this delay here to get the correct status bytes
|
|
delay(3);
|
|
|
|
// If status byte is enabled at least 2 bytes (2 status bytes + any following packet) will remain in FIFO.
|
|
if (isAppendStatus) {
|
|
// read RSSI byte
|
|
_rawRSSI = SPIgetRegValue(RADIOLIB_CC1101_REG_FIFO);
|
|
|
|
// read LQI and CRC byte
|
|
uint8_t val = SPIgetRegValue(RADIOLIB_CC1101_REG_FIFO);
|
|
_rawLQI = val & 0x7F;
|
|
|
|
// check CRC
|
|
if (_crcOn && (val & RADIOLIB_CC1101_CRC_OK) == RADIOLIB_CC1101_CRC_ERROR) {
|
|
_packetLengthQueried = false;
|
|
return (RADIOLIB_ERR_CRC_MISMATCH);
|
|
}
|
|
}
|
|
|
|
// clear internal flag so getPacketLength can return the new packet length
|
|
_packetLengthQueried = false;
|
|
|
|
// Flush then standby according to RXOFF_MODE (default: RADIOLIB_CC1101_RXOFF_IDLE)
|
|
if (SPIgetRegValue(RADIOLIB_CC1101_REG_MCSM1, 3, 2) == RADIOLIB_CC1101_RXOFF_IDLE) {
|
|
|
|
// flush Rx FIFO
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_RX);
|
|
|
|
// set mode to standby
|
|
standby();
|
|
}
|
|
|
|
return(RADIOLIB_ERR_NONE);
|
|
}
|
|
|
|
int16_t CC1101::setFrequency(float freq) {
|
|
// check allowed frequency range
|
|
if(!(((freq > 300.0) && (freq < 348.0)) ||
|
|
((freq > 387.0) && (freq < 464.0)) ||
|
|
((freq > 779.0) && (freq < 928.0)))) {
|
|
return(RADIOLIB_ERR_INVALID_FREQUENCY);
|
|
}
|
|
|
|
// set mode to standby
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE);
|
|
|
|
//set carrier frequency
|
|
uint32_t base = 1;
|
|
uint32_t FRF = (freq * (base << 16)) / 26.0;
|
|
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_FREQ2, (FRF & 0xFF0000) >> 16, 7, 0);
|
|
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_FREQ1, (FRF & 0x00FF00) >> 8, 7, 0);
|
|
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_FREQ0, FRF & 0x0000FF, 7, 0);
|
|
|
|
if(state == RADIOLIB_ERR_NONE) {
|
|
_freq = freq;
|
|
}
|
|
|
|
// Update the TX power accordingly to new freq. (PA values depend on chosen freq)
|
|
return(setOutputPower(_power));
|
|
}
|
|
|
|
int16_t CC1101::setBitRate(float br) {
|
|
RADIOLIB_CHECK_RANGE(br, 0.025, 600.0, RADIOLIB_ERR_INVALID_BIT_RATE);
|
|
|
|
// set mode to standby
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE);
|
|
|
|
// calculate exponent and mantissa values
|
|
uint8_t e = 0;
|
|
uint8_t m = 0;
|
|
getExpMant(br * 1000.0, 256, 28, 14, e, m);
|
|
|
|
// set bit rate value
|
|
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG4, e, 3, 0);
|
|
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG3, m);
|
|
if(state == RADIOLIB_ERR_NONE) {
|
|
CC1101::_br = br;
|
|
}
|
|
return(state);
|
|
}
|
|
|
|
int16_t CC1101::setRxBandwidth(float rxBw) {
|
|
RADIOLIB_CHECK_RANGE(rxBw, 58.0, 812.0, RADIOLIB_ERR_INVALID_RX_BANDWIDTH);
|
|
|
|
// set mode to standby
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE);
|
|
|
|
// calculate exponent and mantissa values
|
|
for(int8_t e = 3; e >= 0; e--) {
|
|
for(int8_t m = 3; m >= 0; m --) {
|
|
float point = (RADIOLIB_CC1101_CRYSTAL_FREQ * 1000000.0)/(8 * (m + 4) * ((uint32_t)1 << e));
|
|
if(fabs((rxBw * 1000.0) - point) <= 1000) {
|
|
// set Rx channel filter bandwidth
|
|
return(SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG4, (e << 6) | (m << 4), 7, 4));
|
|
}
|
|
}
|
|
}
|
|
|
|
return(RADIOLIB_ERR_INVALID_RX_BANDWIDTH);
|
|
}
|
|
|
|
int16_t CC1101::setFrequencyDeviation(float freqDev) {
|
|
// set frequency deviation to lowest available setting (required for digimodes)
|
|
float newFreqDev = freqDev;
|
|
if(freqDev < 0.0) {
|
|
newFreqDev = 1.587;
|
|
}
|
|
|
|
RADIOLIB_CHECK_RANGE(newFreqDev, 1.587, 380.8, RADIOLIB_ERR_INVALID_FREQUENCY_DEVIATION);
|
|
|
|
// set mode to standby
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE);
|
|
|
|
// calculate exponent and mantissa values
|
|
uint8_t e = 0;
|
|
uint8_t m = 0;
|
|
getExpMant(newFreqDev * 1000.0, 8, 17, 7, e, m);
|
|
|
|
// set frequency deviation value
|
|
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_DEVIATN, (e << 4), 6, 4);
|
|
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_DEVIATN, m, 2, 0);
|
|
return(state);
|
|
}
|
|
|
|
int16_t CC1101::setOutputPower(int8_t power) {
|
|
// round to the known frequency settings
|
|
uint8_t f;
|
|
if(_freq < 374.0) {
|
|
// 315 MHz
|
|
f = 0;
|
|
} else if(_freq < 650.5) {
|
|
// 434 MHz
|
|
f = 1;
|
|
} else if(_freq < 891.5) {
|
|
// 868 MHz
|
|
f = 2;
|
|
} else {
|
|
// 915 MHz
|
|
f = 3;
|
|
}
|
|
|
|
// get raw power setting
|
|
uint8_t paTable[8][4] = {{0x12, 0x12, 0x03, 0x03},
|
|
{0x0D, 0x0E, 0x0F, 0x0E},
|
|
{0x1C, 0x1D, 0x1E, 0x1E},
|
|
{0x34, 0x34, 0x27, 0x27},
|
|
{0x51, 0x60, 0x50, 0x8E},
|
|
{0x85, 0x84, 0x81, 0xCD},
|
|
{0xCB, 0xC8, 0xCB, 0xC7},
|
|
{0xC2, 0xC0, 0xC2, 0xC0}};
|
|
|
|
uint8_t powerRaw;
|
|
switch(power) {
|
|
case -30:
|
|
powerRaw = paTable[0][f];
|
|
break;
|
|
case -20:
|
|
powerRaw = paTable[1][f];
|
|
break;
|
|
case -15:
|
|
powerRaw = paTable[2][f];
|
|
break;
|
|
case -10:
|
|
powerRaw = paTable[3][f];
|
|
break;
|
|
case 0:
|
|
powerRaw = paTable[4][f];
|
|
break;
|
|
case 5:
|
|
powerRaw = paTable[5][f];
|
|
break;
|
|
case 7:
|
|
powerRaw = paTable[6][f];
|
|
break;
|
|
case 10:
|
|
powerRaw = paTable[7][f];
|
|
break;
|
|
default:
|
|
return(RADIOLIB_ERR_INVALID_OUTPUT_POWER);
|
|
}
|
|
|
|
// store the value
|
|
_power = power;
|
|
|
|
if(_modulation == RADIOLIB_CC1101_MOD_FORMAT_ASK_OOK){
|
|
// Amplitude modulation:
|
|
// PA_TABLE[0] is the power to be used when transmitting a 0 (no power)
|
|
// PA_TABLE[1] is the power to be used when transmitting a 1 (full power)
|
|
|
|
uint8_t paValues[2] = {0x00, powerRaw};
|
|
SPIwriteRegisterBurst(RADIOLIB_CC1101_REG_PATABLE, paValues, 2);
|
|
return(RADIOLIB_ERR_NONE);
|
|
|
|
} else {
|
|
// Freq modulation:
|
|
// PA_TABLE[0] is the power to be used when transmitting.
|
|
return(SPIsetRegValue(RADIOLIB_CC1101_REG_PATABLE, powerRaw));
|
|
}
|
|
}
|
|
|
|
int16_t CC1101::setSyncWord(uint8_t* syncWord, uint8_t len, uint8_t maxErrBits, bool requireCarrierSense) {
|
|
if((maxErrBits > 1) || (len != 2)) {
|
|
return(RADIOLIB_ERR_INVALID_SYNC_WORD);
|
|
}
|
|
|
|
// sync word must not contain value 0x00
|
|
for(uint8_t i = 0; i < len; i++) {
|
|
if(syncWord[i] == 0x00) {
|
|
return(RADIOLIB_ERR_INVALID_SYNC_WORD);
|
|
}
|
|
}
|
|
|
|
_syncWordLength = len;
|
|
|
|
// enable sync word filtering
|
|
int16_t state = enableSyncWordFiltering(maxErrBits, requireCarrierSense);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// set sync word register
|
|
state = SPIsetRegValue(RADIOLIB_CC1101_REG_SYNC1, syncWord[0]);
|
|
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_SYNC0, syncWord[1]);
|
|
|
|
return(state);
|
|
}
|
|
|
|
int16_t CC1101::setSyncWord(uint8_t syncH, uint8_t syncL, uint8_t maxErrBits, bool requireCarrierSense) {
|
|
uint8_t syncWord[] = { syncH, syncL };
|
|
return(setSyncWord(syncWord, sizeof(syncWord), maxErrBits, requireCarrierSense));
|
|
}
|
|
|
|
int16_t CC1101::setPreambleLength(uint8_t preambleLength) {
|
|
// check allowed values
|
|
uint8_t value;
|
|
switch(preambleLength){
|
|
case 16:
|
|
value = RADIOLIB_CC1101_NUM_PREAMBLE_2;
|
|
break;
|
|
case 24:
|
|
value = RADIOLIB_CC1101_NUM_PREAMBLE_3;
|
|
break;
|
|
case 32:
|
|
value = RADIOLIB_CC1101_NUM_PREAMBLE_4;
|
|
break;
|
|
case 48:
|
|
value = RADIOLIB_CC1101_NUM_PREAMBLE_6;
|
|
break;
|
|
case 64:
|
|
value = RADIOLIB_CC1101_NUM_PREAMBLE_8;
|
|
break;
|
|
case 96:
|
|
value = RADIOLIB_CC1101_NUM_PREAMBLE_12;
|
|
break;
|
|
case 128:
|
|
value = RADIOLIB_CC1101_NUM_PREAMBLE_16;
|
|
break;
|
|
case 192:
|
|
value = RADIOLIB_CC1101_NUM_PREAMBLE_24;
|
|
break;
|
|
default:
|
|
return(RADIOLIB_ERR_INVALID_PREAMBLE_LENGTH);
|
|
}
|
|
|
|
|
|
return SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG1, value, 6, 4);
|
|
}
|
|
|
|
|
|
int16_t CC1101::setNodeAddress(uint8_t nodeAddr, uint8_t numBroadcastAddrs) {
|
|
RADIOLIB_CHECK_RANGE(numBroadcastAddrs, 1, 2, RADIOLIB_ERR_INVALID_NUM_BROAD_ADDRS);
|
|
|
|
// enable address filtering
|
|
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, numBroadcastAddrs + 0x01, 1, 0);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// set node address
|
|
return(SPIsetRegValue(RADIOLIB_CC1101_REG_ADDR, nodeAddr));
|
|
}
|
|
|
|
int16_t CC1101::disableAddressFiltering() {
|
|
// disable address filtering
|
|
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, RADIOLIB_CC1101_ADR_CHK_NONE, 1, 0);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// set node address to default (0x00)
|
|
return(SPIsetRegValue(RADIOLIB_CC1101_REG_ADDR, 0x00));
|
|
}
|
|
|
|
|
|
int16_t CC1101::setOOK(bool enableOOK) {
|
|
// Change modulation
|
|
if(enableOOK) {
|
|
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MOD_FORMAT_ASK_OOK, 6, 4);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// PA_TABLE[0] is (by default) the power value used when transmitting a "0".
|
|
// Set PA_TABLE[1] to be used when transmitting a "1".
|
|
state = SPIsetRegValue(RADIOLIB_CC1101_REG_FREND0, 1, 2, 0);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// update current modulation
|
|
_modulation = RADIOLIB_CC1101_MOD_FORMAT_ASK_OOK;
|
|
} else {
|
|
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MOD_FORMAT_2_FSK, 6, 4);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// Reset FREND0 to default value.
|
|
state = SPIsetRegValue(RADIOLIB_CC1101_REG_FREND0, 0, 2, 0);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// update current modulation
|
|
_modulation = RADIOLIB_CC1101_MOD_FORMAT_2_FSK;
|
|
}
|
|
|
|
// Update PA_TABLE values according to the new _modulation.
|
|
return(setOutputPower(_power));
|
|
}
|
|
|
|
float CC1101::getRSSI() {
|
|
float rssi;
|
|
|
|
if (_directMode) {
|
|
if(_rawRSSI >= 128) {
|
|
rssi = (((float)_rawRSSI - 256.0)/2.0) - 74.0;
|
|
} else {
|
|
rssi = (((float)_rawRSSI)/2.0) - 74.0;
|
|
}
|
|
} else {
|
|
uint8_t rawRssi = SPIreadRegister(RADIOLIB_CC1101_REG_RSSI);
|
|
if (rawRssi >= 128)
|
|
{
|
|
rssi = ((rawRssi - 256) / 2) - 74;
|
|
}
|
|
else
|
|
{
|
|
rssi = (rawRssi / 2) - 74;
|
|
}
|
|
}
|
|
return(rssi);
|
|
}
|
|
|
|
uint8_t CC1101::getLQI() const {
|
|
return(_rawLQI);
|
|
}
|
|
|
|
size_t CC1101::getPacketLength(bool update) {
|
|
if(!_packetLengthQueried && update) {
|
|
if (_packetLengthConfig == RADIOLIB_CC1101_LENGTH_CONFIG_VARIABLE) {
|
|
_packetLength = SPIreadRegister(RADIOLIB_CC1101_REG_FIFO);
|
|
} else {
|
|
_packetLength = SPIreadRegister(RADIOLIB_CC1101_REG_PKTLEN);
|
|
}
|
|
|
|
_packetLengthQueried = true;
|
|
}
|
|
|
|
return(_packetLength);
|
|
}
|
|
|
|
int16_t CC1101::fixedPacketLengthMode(uint8_t len) {
|
|
return(setPacketMode(RADIOLIB_CC1101_LENGTH_CONFIG_FIXED, len));
|
|
}
|
|
|
|
int16_t CC1101::variablePacketLengthMode(uint8_t maxLen) {
|
|
return(setPacketMode(RADIOLIB_CC1101_LENGTH_CONFIG_VARIABLE, maxLen));
|
|
}
|
|
|
|
int16_t CC1101::enableSyncWordFiltering(uint8_t maxErrBits, bool requireCarrierSense) {
|
|
switch(maxErrBits){
|
|
case 0:
|
|
// in 16 bit sync word, expect all 16 bits
|
|
return(SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, (requireCarrierSense ? RADIOLIB_CC1101_SYNC_MODE_16_16_THR : RADIOLIB_CC1101_SYNC_MODE_16_16), 2, 0));
|
|
case 1:
|
|
// in 16 bit sync word, expect at least 15 bits
|
|
return(SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, (requireCarrierSense ? RADIOLIB_CC1101_SYNC_MODE_15_16_THR : RADIOLIB_CC1101_SYNC_MODE_15_16), 2, 0));
|
|
default:
|
|
return(RADIOLIB_ERR_INVALID_SYNC_WORD);
|
|
}
|
|
}
|
|
|
|
int16_t CC1101::disableSyncWordFiltering(bool requireCarrierSense) {
|
|
return(SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, (requireCarrierSense ? RADIOLIB_CC1101_SYNC_MODE_NONE_THR : RADIOLIB_CC1101_SYNC_MODE_NONE), 2, 0));
|
|
}
|
|
|
|
int16_t CC1101::setCrcFiltering(bool crcOn) {
|
|
_crcOn = crcOn;
|
|
|
|
if (crcOn == true) {
|
|
return(SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_CRC_ON, 2, 2));
|
|
} else {
|
|
return(SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_CRC_OFF, 2, 2));
|
|
}
|
|
}
|
|
|
|
int16_t CC1101::setPromiscuousMode(bool promiscuous) {
|
|
int16_t state = RADIOLIB_ERR_NONE;
|
|
|
|
if (_promiscuous == promiscuous) {
|
|
return(state);
|
|
}
|
|
|
|
if (promiscuous == true) {
|
|
// disable preamble and sync word filtering and insertion
|
|
state = disableSyncWordFiltering();
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// disable CRC filtering
|
|
state = setCrcFiltering(false);
|
|
} else {
|
|
// enable preamble and sync word filtering and insertion
|
|
state = enableSyncWordFiltering();
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// enable CRC filtering
|
|
state = setCrcFiltering(true);
|
|
}
|
|
|
|
_promiscuous = promiscuous;
|
|
|
|
return(state);
|
|
}
|
|
|
|
bool CC1101::getPromiscuousMode() {
|
|
return (_promiscuous);
|
|
}
|
|
|
|
int16_t CC1101::setDataShaping(uint8_t sh) {
|
|
// set mode to standby
|
|
int16_t state = standby();
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// set data shaping
|
|
switch(sh) {
|
|
case RADIOLIB_SHAPING_NONE:
|
|
state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MOD_FORMAT_2_FSK, 6, 4);
|
|
break;
|
|
case RADIOLIB_SHAPING_0_5:
|
|
state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MOD_FORMAT_GFSK, 6, 4);
|
|
break;
|
|
default:
|
|
return(RADIOLIB_ERR_INVALID_DATA_SHAPING);
|
|
}
|
|
return(state);
|
|
}
|
|
|
|
int16_t CC1101::setEncoding(uint8_t encoding) {
|
|
// set mode to standby
|
|
int16_t state = standby();
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// set encoding
|
|
switch(encoding) {
|
|
case RADIOLIB_ENCODING_NRZ:
|
|
state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MANCHESTER_EN_OFF, 3, 3);
|
|
RADIOLIB_ASSERT(state);
|
|
return(SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_WHITE_DATA_OFF, 6, 6));
|
|
case RADIOLIB_ENCODING_MANCHESTER:
|
|
state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MANCHESTER_EN_ON, 3, 3);
|
|
RADIOLIB_ASSERT(state);
|
|
return(SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_WHITE_DATA_OFF, 6, 6));
|
|
case RADIOLIB_ENCODING_WHITENING:
|
|
state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MANCHESTER_EN_OFF, 3, 3);
|
|
RADIOLIB_ASSERT(state);
|
|
return(SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_WHITE_DATA_ON, 6, 6));
|
|
default:
|
|
return(RADIOLIB_ERR_INVALID_ENCODING);
|
|
}
|
|
}
|
|
|
|
void CC1101::setRfSwitchPins(RADIOLIB_PIN_TYPE rxEn, RADIOLIB_PIN_TYPE txEn) {
|
|
_mod->setRfSwitchPins(rxEn, txEn);
|
|
}
|
|
|
|
uint8_t CC1101::randomByte() {
|
|
// set mode to Rx
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_RX);
|
|
RADIOLIB_DEBUG_PRINTLN("random");
|
|
|
|
// wait a bit for the RSSI reading to stabilise
|
|
_mod->delay(10);
|
|
|
|
// read RSSI value 8 times, always keep just the least significant bit
|
|
uint8_t randByte = 0x00;
|
|
for(uint8_t i = 0; i < 8; i++) {
|
|
randByte |= ((SPIreadRegister(RADIOLIB_CC1101_REG_RSSI) & 0x01) << i);
|
|
}
|
|
|
|
// set mode to standby
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE);
|
|
|
|
return(randByte);
|
|
}
|
|
|
|
int16_t CC1101::getChipVersion() {
|
|
return(SPIgetRegValue(RADIOLIB_CC1101_REG_VERSION));
|
|
}
|
|
|
|
#if !defined(RADIOLIB_EXCLUDE_DIRECT_RECEIVE)
|
|
void CC1101::setDirectAction(void (*func)(void)) {
|
|
setGdo0Action(func);
|
|
}
|
|
|
|
void CC1101::readBit(RADIOLIB_PIN_TYPE pin) {
|
|
updateDirectBuffer((uint8_t)digitalRead(pin));
|
|
}
|
|
#endif
|
|
|
|
int16_t CC1101::setDIOMapping(RADIOLIB_PIN_TYPE pin, uint8_t value) {
|
|
if (pin > 2)
|
|
return RADIOLIB_ERR_INVALID_DIO_PIN;
|
|
|
|
return(SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG0 - pin, value));
|
|
}
|
|
|
|
int16_t CC1101::config() {
|
|
// Reset the radio. Registers may be dirty from previous usage.
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_RESET);
|
|
|
|
// Wait a ridiculous amount of time to be sure radio is ready.
|
|
_mod->delay(150);
|
|
|
|
// enable automatic frequency synthesizer calibration
|
|
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_MCSM0, RADIOLIB_CC1101_FS_AUTOCAL_IDLE_TO_RXTX, 5, 4);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// set packet mode
|
|
state = packetMode();
|
|
|
|
return(state);
|
|
}
|
|
|
|
int16_t CC1101::directMode(bool sync) {
|
|
// set mode to standby
|
|
SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE);
|
|
|
|
int16_t state = 0;
|
|
_directMode = sync;
|
|
if (sync) {
|
|
// set GDO0 and GDO2 mapping
|
|
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG0, RADIOLIB_CC1101_GDOX_SERIAL_CLOCK , 5, 0);
|
|
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG2, RADIOLIB_CC1101_GDOX_SERIAL_DATA_SYNC , 5, 0);
|
|
|
|
// set continuous mode
|
|
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_PKT_FORMAT_SYNCHRONOUS, 5, 4);
|
|
}
|
|
else {
|
|
// set GDO0 mapping
|
|
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG0, RADIOLIB_CC1101_GDOX_SERIAL_DATA_ASYNC , 5, 0);
|
|
|
|
// set asynchronous continuous mode
|
|
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_PKT_FORMAT_ASYNCHRONOUS, 5, 4);
|
|
}
|
|
|
|
state |= SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_LENGTH_CONFIG_INFINITE, 1, 0);
|
|
return(state);
|
|
}
|
|
|
|
void CC1101::getExpMant(float target, uint16_t mantOffset, uint8_t divExp, uint8_t expMax, uint8_t& exp, uint8_t& mant) {
|
|
// get table origin point (exp = 0, mant = 0)
|
|
float origin = (mantOffset * RADIOLIB_CC1101_CRYSTAL_FREQ * 1000000.0)/((uint32_t)1 << divExp);
|
|
|
|
// iterate over possible exponent values
|
|
for(int8_t e = expMax; e >= 0; e--) {
|
|
// get table column start value (exp = e, mant = 0);
|
|
float intervalStart = ((uint32_t)1 << e) * origin;
|
|
|
|
// check if target value is in this column
|
|
if(target >= intervalStart) {
|
|
// save exponent value
|
|
exp = e;
|
|
|
|
// calculate size of step between table rows
|
|
float stepSize = intervalStart/(float)mantOffset;
|
|
|
|
// get target point position (exp = e, mant = m)
|
|
mant = ((target - intervalStart) / stepSize);
|
|
|
|
// we only need the first match, terminate
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
int16_t CC1101::setPacketMode(uint8_t mode, uint16_t len) {
|
|
// check length
|
|
if (len > RADIOLIB_CC1101_MAX_PACKET_LENGTH) {
|
|
return(RADIOLIB_ERR_PACKET_TOO_LONG);
|
|
}
|
|
|
|
// set PKTCTRL0.LENGTH_CONFIG
|
|
int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, mode, 1, 0);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// set length to register
|
|
state = SPIsetRegValue(RADIOLIB_CC1101_REG_PKTLEN, len);
|
|
RADIOLIB_ASSERT(state);
|
|
|
|
// update the cached value
|
|
_packetLength = len;
|
|
_packetLengthConfig = mode;
|
|
return(state);
|
|
}
|
|
|
|
int16_t CC1101::SPIgetRegValue(uint8_t reg, uint8_t msb, uint8_t lsb) {
|
|
// status registers require special command
|
|
if(reg > RADIOLIB_CC1101_REG_TEST0) {
|
|
reg |= RADIOLIB_CC1101_CMD_ACCESS_STATUS_REG;
|
|
}
|
|
|
|
return(_mod->SPIgetRegValue(reg, msb, lsb));
|
|
}
|
|
|
|
int16_t CC1101::SPIsetRegValue(uint8_t reg, uint8_t value, uint8_t msb, uint8_t lsb, uint8_t checkInterval) {
|
|
// status registers require special command
|
|
if(reg > RADIOLIB_CC1101_REG_TEST0) {
|
|
reg |= RADIOLIB_CC1101_CMD_ACCESS_STATUS_REG;
|
|
}
|
|
|
|
return(_mod->SPIsetRegValue(reg, value, msb, lsb, checkInterval));
|
|
}
|
|
|
|
void CC1101::SPIreadRegisterBurst(uint8_t reg, uint8_t numBytes, uint8_t* inBytes) {
|
|
_mod->SPIreadRegisterBurst(reg | RADIOLIB_CC1101_CMD_BURST, numBytes, inBytes);
|
|
}
|
|
|
|
uint8_t CC1101::SPIreadRegister(uint8_t reg) {
|
|
// status registers require special command
|
|
if(reg > RADIOLIB_CC1101_REG_TEST0) {
|
|
reg |= RADIOLIB_CC1101_CMD_ACCESS_STATUS_REG;
|
|
}
|
|
|
|
return(_mod->SPIreadRegister(reg));
|
|
}
|
|
|
|
void CC1101::SPIwriteRegister(uint8_t reg, uint8_t data) {
|
|
// status registers require special command
|
|
if(reg > RADIOLIB_CC1101_REG_TEST0) {
|
|
reg |= RADIOLIB_CC1101_CMD_ACCESS_STATUS_REG;
|
|
}
|
|
|
|
return(_mod->SPIwriteRegister(reg, data));
|
|
}
|
|
|
|
void CC1101::SPIwriteRegisterBurst(uint8_t reg, uint8_t* data, size_t len) {
|
|
_mod->SPIwriteRegisterBurst(reg | RADIOLIB_CC1101_CMD_BURST, data, len);
|
|
}
|
|
|
|
void CC1101::SPIsendCommand(uint8_t cmd) {
|
|
// pull NSS low
|
|
_mod->digitalWrite(_mod->getCs(), LOW);
|
|
|
|
// start transfer
|
|
_mod->SPIbeginTransaction();
|
|
|
|
// send the command byte
|
|
_mod->SPItransfer(cmd);
|
|
|
|
// stop transfer
|
|
_mod->SPIendTransaction();
|
|
_mod->digitalWrite(_mod->getCs(), HIGH);
|
|
}
|
|
|
|
#endif
|