#include "CC1101.h" #if !defined(RADIOLIB_EXCLUDE_CC1101) CC1101::CC1101(Module* module) : PhysicalLayer(RADIOLIB_CC1101_FREQUENCY_STEP_SIZE, RADIOLIB_CC1101_MAX_PACKET_LENGTH) { _mod = module; } Module* CC1101::getMod() { return(_mod); } int16_t CC1101::begin(float freq, float br, float freqDev, float rxBw, int8_t power, uint8_t preambleLength) { // set module properties _mod->SPIreadCommand = RADIOLIB_CC1101_CMD_READ; _mod->SPIwriteCommand = RADIOLIB_CC1101_CMD_WRITE; _mod->init(); _mod->pinMode(_mod->getIrq(), INPUT); // try to find the CC1101 chip uint8_t i = 0; bool flagFound = false; while((i < 10) && !flagFound) { int16_t version = getChipVersion(); if((version == RADIOLIB_CC1101_VERSION_CURRENT) || (version == RADIOLIB_CC1101_VERSION_LEGACY) || (version == RADIOLIB_CC1101_VERSION_CLONE)) { flagFound = true; } else { #if defined(RADIOLIB_DEBUG) RADIOLIB_DEBUG_PRINT(F("CC1101 not found! (")); RADIOLIB_DEBUG_PRINT(i + 1); RADIOLIB_DEBUG_PRINT(F(" of 10 tries) RADIOLIB_CC1101_REG_VERSION == ")); char buffHex[7]; sprintf(buffHex, "0x%04X", version); RADIOLIB_DEBUG_PRINT(buffHex); RADIOLIB_DEBUG_PRINT(F(", expected 0x0004/0x0014")); RADIOLIB_DEBUG_PRINTLN(); #endif _mod->delay(10); i++; } } if(!flagFound) { RADIOLIB_DEBUG_PRINTLN(F("No CC1101 found!")); _mod->term(); return(RADIOLIB_ERR_CHIP_NOT_FOUND); } else { RADIOLIB_DEBUG_PRINTLN(F("M\tCC1101")); } // configure settings not accessible by API int16_t state = config(); RADIOLIB_ASSERT(state); // configure publicly accessible settings state = setFrequency(freq); RADIOLIB_ASSERT(state); // configure bitrate state = setBitRate(br); RADIOLIB_ASSERT(state); // configure default RX bandwidth state = setRxBandwidth(rxBw); RADIOLIB_ASSERT(state); // configure default frequency deviation state = setFrequencyDeviation(freqDev); RADIOLIB_ASSERT(state); // configure default TX output power state = setOutputPower(power); RADIOLIB_ASSERT(state); // set default packet length mode state = variablePacketLengthMode(); RADIOLIB_ASSERT(state); // configure default preamble length state = setPreambleLength(preambleLength); RADIOLIB_ASSERT(state); // set default data shaping state = setDataShaping(RADIOLIB_SHAPING_NONE); RADIOLIB_ASSERT(state); // set default encoding state = setEncoding(RADIOLIB_ENCODING_NRZ); RADIOLIB_ASSERT(state); // set default sync word state = setSyncWord(0x12, 0xAD, 0, false); RADIOLIB_ASSERT(state); // flush FIFOs SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_RX); SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_TX); return(state); } int16_t CC1101::transmit(uint8_t* data, size_t len, uint8_t addr) { // calculate timeout (5ms + 500 % of expected time-on-air) uint32_t timeout = 5000000 + (uint32_t)((((float)(len * 8)) / (_br * 1000.0)) * 5000000.0); // start transmission int16_t state = startTransmit(data, len, addr); RADIOLIB_ASSERT(state); // wait for transmission start or timeout uint32_t start = _mod->micros(); while(!_mod->digitalRead(_mod->getIrq())) { _mod->yield(); if(_mod->micros() - start > timeout) { finishTransmit(); return(RADIOLIB_ERR_TX_TIMEOUT); } } // wait for transmission end or timeout start = _mod->micros(); while(_mod->digitalRead(_mod->getIrq())) { _mod->yield(); if(_mod->micros() - start > timeout) { finishTransmit(); return(RADIOLIB_ERR_TX_TIMEOUT); } } return(finishTransmit()); } int16_t CC1101::receive(uint8_t* data, size_t len) { // calculate timeout (500 ms + 400 full max-length packets at current bit rate) uint32_t timeout = 500000 + (1.0/(_br*1000.0))*(RADIOLIB_CC1101_MAX_PACKET_LENGTH*400.0); // start reception int16_t state = startReceive(); RADIOLIB_ASSERT(state); // wait for packet or timeout uint32_t start = _mod->micros(); while(!_mod->digitalRead(_mod->getIrq())) { _mod->yield(); if(_mod->micros() - start > timeout) { standby(); SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_RX); return(RADIOLIB_ERR_RX_TIMEOUT); } } // read packet data return(readData(data, len)); } int16_t CC1101::standby() { // set idle mode SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE); // set RF switch (if present) _mod->setRfSwitchState(LOW, LOW); return(RADIOLIB_ERR_NONE); } int16_t CC1101::transmitDirect(uint32_t frf) { return transmitDirect(true, frf); } int16_t CC1101::transmitDirectAsync(uint32_t frf) { return transmitDirect(false, frf); } int16_t CC1101::transmitDirect(bool sync, uint32_t frf) { // set RF switch (if present) _mod->setRfSwitchState(LOW, HIGH); // user requested to start transmitting immediately (required for RTTY) if(frf != 0) { SPIwriteRegister(RADIOLIB_CC1101_REG_FREQ2, (frf & 0xFF0000) >> 16); SPIwriteRegister(RADIOLIB_CC1101_REG_FREQ1, (frf & 0x00FF00) >> 8); SPIwriteRegister(RADIOLIB_CC1101_REG_FREQ0, frf & 0x0000FF); SPIsendCommand(RADIOLIB_CC1101_CMD_TX); } // activate direct mode int16_t state = directMode(sync); RADIOLIB_ASSERT(state); // start transmitting SPIsendCommand(RADIOLIB_CC1101_CMD_TX); return(state); } int16_t CC1101::receiveDirect() { return receiveDirect(true); } int16_t CC1101::receiveDirectAsync() { return receiveDirect(false); } int16_t CC1101::receiveDirect(bool sync) { // set RF switch (if present) _mod->setRfSwitchState(HIGH, LOW); // activate direct mode int16_t state = directMode(sync); RADIOLIB_ASSERT(state); // start receiving SPIsendCommand(RADIOLIB_CC1101_CMD_RX); return(RADIOLIB_ERR_NONE); } int16_t CC1101::packetMode() { int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, RADIOLIB_CC1101_CRC_AUTOFLUSH_OFF | RADIOLIB_CC1101_APPEND_STATUS_ON | RADIOLIB_CC1101_ADR_CHK_NONE, 3, 0); state |= SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_WHITE_DATA_OFF | RADIOLIB_CC1101_PKT_FORMAT_NORMAL, 6, 4); state |= SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_CRC_ON | _packetLengthConfig, 2, 0); return(state); } void CC1101::setGdo0Action(void (*func)(void), RADIOLIB_INTERRUPT_STATUS dir) { _mod->attachInterrupt(RADIOLIB_DIGITAL_PIN_TO_INTERRUPT(_mod->getIrq()), func, dir); } void CC1101::clearGdo0Action() { _mod->detachInterrupt(RADIOLIB_DIGITAL_PIN_TO_INTERRUPT(_mod->getIrq())); } void CC1101::setGdo2Action(void (*func)(void), RADIOLIB_INTERRUPT_STATUS dir) { if(_mod->getGpio() != RADIOLIB_NC) { return; } _mod->pinMode(_mod->getGpio(), INPUT); _mod->attachInterrupt(RADIOLIB_DIGITAL_PIN_TO_INTERRUPT(_mod->getGpio()), func, dir); } void CC1101::clearGdo2Action() { if(_mod->getGpio() != RADIOLIB_NC) { return; } _mod->detachInterrupt(RADIOLIB_DIGITAL_PIN_TO_INTERRUPT(_mod->getGpio())); } int16_t CC1101::startTransmit(uint8_t* data, size_t len, uint8_t addr) { // check packet length if(len > RADIOLIB_CC1101_MAX_PACKET_LENGTH) { return(RADIOLIB_ERR_PACKET_TOO_LONG); } // set mode to standby standby(); // flush Tx FIFO SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_TX); // set GDO0 mapping int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG0, RADIOLIB_CC1101_GDOX_SYNC_WORD_SENT_OR_RECEIVED); RADIOLIB_ASSERT(state); // data put on FIFO. uint8_t dataSent = 0; // optionally write packet length if (_packetLengthConfig == RADIOLIB_CC1101_LENGTH_CONFIG_VARIABLE) { // enforce variable len limit. if (len > RADIOLIB_CC1101_MAX_PACKET_LENGTH - 1) { return (RADIOLIB_ERR_PACKET_TOO_LONG); } SPIwriteRegister(RADIOLIB_CC1101_REG_FIFO, len); dataSent += 1; } // check address filtering uint8_t filter = SPIgetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, 1, 0); if(filter != RADIOLIB_CC1101_ADR_CHK_NONE) { SPIwriteRegister(RADIOLIB_CC1101_REG_FIFO, addr); dataSent += 1; } // fill the FIFO. uint8_t initialWrite = min((uint8_t)len, (uint8_t)(RADIOLIB_CC1101_FIFO_SIZE - dataSent)); SPIwriteRegisterBurst(RADIOLIB_CC1101_REG_FIFO, data, initialWrite); dataSent += initialWrite; // set RF switch (if present) _mod->setRfSwitchState(LOW, HIGH); // set mode to transmit SPIsendCommand(RADIOLIB_CC1101_CMD_TX); // keep feeding the FIFO until the packet is over. while (dataSent < len) { // get number of bytes in FIFO. uint8_t bytesInFIFO = SPIgetRegValue(RADIOLIB_CC1101_REG_TXBYTES, 6, 0); // if there's room then put other data. if (bytesInFIFO < RADIOLIB_CC1101_FIFO_SIZE) { uint8_t bytesToWrite = min((uint8_t)(RADIOLIB_CC1101_FIFO_SIZE - bytesInFIFO), (uint8_t)(len - dataSent)); SPIwriteRegisterBurst(RADIOLIB_CC1101_REG_FIFO, &data[dataSent], bytesToWrite); dataSent += bytesToWrite; } else { // wait for radio to send some data. /* * Does this work for all rates? If 1 ms is longer than the 1ms delay * then the entire FIFO will be transmitted during that delay. * * TODO: test this on real hardware */ delayMicroseconds(250); } } return (state); } int16_t CC1101::finishTransmit() { // set mode to standby to disable transmitter/RF switch int16_t state = standby(); // flush Tx FIFO SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_TX); return(state); } int16_t CC1101::startReceive() { // set mode to standby standby(); // flush Rx FIFO SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_RX); // set GDO0 mapping: Asserted when RX FIFO > 4 bytes. int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG0, RADIOLIB_CC1101_GDOX_RX_FIFO_FULL_OR_PKT_END); state |= SPIsetRegValue(RADIOLIB_CC1101_REG_FIFOTHR, RADIOLIB_CC1101_FIFO_THR_TX_61_RX_4, 3, 0); RADIOLIB_ASSERT(state); // set RF switch (if present) _mod->setRfSwitchState(HIGH, LOW); // set mode to receive SPIsendCommand(RADIOLIB_CC1101_CMD_RX); return(state); } int16_t CC1101::readData(uint8_t* data, size_t len) { // get packet length size_t length = getPacketLength(); if((len != 0) && (len < length)) { // user requested less data than we got, only return what was requested length = len; } // check address filtering uint8_t filter = SPIgetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, 1, 0); if(filter != RADIOLIB_CC1101_ADR_CHK_NONE) { SPIreadRegister(RADIOLIB_CC1101_REG_FIFO); } uint8_t bytesInFIFO = SPIgetRegValue(RADIOLIB_CC1101_REG_RXBYTES, 6, 0); size_t readBytes = 0; uint32_t lastPop = millis(); // keep reading from FIFO until we get all the packet. while (readBytes < length) { if (bytesInFIFO == 0) { if (millis() - lastPop > 5) { // readData was required to read a packet longer than the one received. RADIOLIB_DEBUG_PRINTLN(F("No data for more than 5mS. Stop here.")); break; } else { delay(1); bytesInFIFO = SPIgetRegValue(RADIOLIB_CC1101_REG_RXBYTES, 6, 0); continue; } } // read the minimum between "remaining length" and bytesInFifo uint8_t bytesToRead = min((uint8_t)(length - readBytes), bytesInFIFO); SPIreadRegisterBurst(RADIOLIB_CC1101_REG_FIFO, bytesToRead, &(data[readBytes])); readBytes += bytesToRead; lastPop = millis(); // Get how many bytes are left in FIFO. bytesInFIFO = SPIgetRegValue(RADIOLIB_CC1101_REG_RXBYTES, 6, 0); } // check if status bytes are enabled (default: RADIOLIB_CC1101_APPEND_STATUS_ON) bool isAppendStatus = SPIgetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, 2, 2) == RADIOLIB_CC1101_APPEND_STATUS_ON; // for some reason, we need this delay here to get the correct status bytes delay(3); // If status byte is enabled at least 2 bytes (2 status bytes + any following packet) will remain in FIFO. if (isAppendStatus) { // read RSSI byte _rawRSSI = SPIgetRegValue(RADIOLIB_CC1101_REG_FIFO); // read LQI and CRC byte uint8_t val = SPIgetRegValue(RADIOLIB_CC1101_REG_FIFO); _rawLQI = val & 0x7F; // check CRC if (_crcOn && (val & RADIOLIB_CC1101_CRC_OK) == RADIOLIB_CC1101_CRC_ERROR) { _packetLengthQueried = false; return (RADIOLIB_ERR_CRC_MISMATCH); } } // clear internal flag so getPacketLength can return the new packet length _packetLengthQueried = false; // Flush then standby according to RXOFF_MODE (default: RADIOLIB_CC1101_RXOFF_IDLE) if (SPIgetRegValue(RADIOLIB_CC1101_REG_MCSM1, 3, 2) == RADIOLIB_CC1101_RXOFF_IDLE) { // flush Rx FIFO SPIsendCommand(RADIOLIB_CC1101_CMD_FLUSH_RX); // set mode to standby standby(); } return(RADIOLIB_ERR_NONE); } int16_t CC1101::setFrequency(float freq) { // check allowed frequency range if(!(((freq > 300.0) && (freq < 348.0)) || ((freq > 387.0) && (freq < 464.0)) || ((freq > 779.0) && (freq < 928.0)))) { return(RADIOLIB_ERR_INVALID_FREQUENCY); } // set mode to standby SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE); //set carrier frequency uint32_t base = 1; uint32_t FRF = (freq * (base << 16)) / 26.0; int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_FREQ2, (FRF & 0xFF0000) >> 16, 7, 0); state |= SPIsetRegValue(RADIOLIB_CC1101_REG_FREQ1, (FRF & 0x00FF00) >> 8, 7, 0); state |= SPIsetRegValue(RADIOLIB_CC1101_REG_FREQ0, FRF & 0x0000FF, 7, 0); if(state == RADIOLIB_ERR_NONE) { _freq = freq; } // Update the TX power accordingly to new freq. (PA values depend on chosen freq) return(setOutputPower(_power)); } int16_t CC1101::setBitRate(float br) { RADIOLIB_CHECK_RANGE(br, 0.025, 600.0, RADIOLIB_ERR_INVALID_BIT_RATE); // set mode to standby SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE); // calculate exponent and mantissa values uint8_t e = 0; uint8_t m = 0; getExpMant(br * 1000.0, 256, 28, 14, e, m); // set bit rate value int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG4, e, 3, 0); state |= SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG3, m); if(state == RADIOLIB_ERR_NONE) { CC1101::_br = br; } return(state); } int16_t CC1101::setRxBandwidth(float rxBw) { RADIOLIB_CHECK_RANGE(rxBw, 58.0, 812.0, RADIOLIB_ERR_INVALID_RX_BANDWIDTH); // set mode to standby SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE); // calculate exponent and mantissa values for(int8_t e = 3; e >= 0; e--) { for(int8_t m = 3; m >= 0; m --) { float point = (RADIOLIB_CC1101_CRYSTAL_FREQ * 1000000.0)/(8 * (m + 4) * ((uint32_t)1 << e)); if(fabs((rxBw * 1000.0) - point) <= 1000) { // set Rx channel filter bandwidth return(SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG4, (e << 6) | (m << 4), 7, 4)); } } } return(RADIOLIB_ERR_INVALID_RX_BANDWIDTH); } int16_t CC1101::setFrequencyDeviation(float freqDev) { // set frequency deviation to lowest available setting (required for digimodes) float newFreqDev = freqDev; if(freqDev < 0.0) { newFreqDev = 1.587; } RADIOLIB_CHECK_RANGE(newFreqDev, 1.587, 380.8, RADIOLIB_ERR_INVALID_FREQUENCY_DEVIATION); // set mode to standby SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE); // calculate exponent and mantissa values uint8_t e = 0; uint8_t m = 0; getExpMant(newFreqDev * 1000.0, 8, 17, 7, e, m); // set frequency deviation value int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_DEVIATN, (e << 4), 6, 4); state |= SPIsetRegValue(RADIOLIB_CC1101_REG_DEVIATN, m, 2, 0); return(state); } int16_t CC1101::setOutputPower(int8_t power) { // round to the known frequency settings uint8_t f; if(_freq < 374.0) { // 315 MHz f = 0; } else if(_freq < 650.5) { // 434 MHz f = 1; } else if(_freq < 891.5) { // 868 MHz f = 2; } else { // 915 MHz f = 3; } // get raw power setting uint8_t paTable[8][4] = {{0x12, 0x12, 0x03, 0x03}, {0x0D, 0x0E, 0x0F, 0x0E}, {0x1C, 0x1D, 0x1E, 0x1E}, {0x34, 0x34, 0x27, 0x27}, {0x51, 0x60, 0x50, 0x8E}, {0x85, 0x84, 0x81, 0xCD}, {0xCB, 0xC8, 0xCB, 0xC7}, {0xC2, 0xC0, 0xC2, 0xC0}}; uint8_t powerRaw; switch(power) { case -30: powerRaw = paTable[0][f]; break; case -20: powerRaw = paTable[1][f]; break; case -15: powerRaw = paTable[2][f]; break; case -10: powerRaw = paTable[3][f]; break; case 0: powerRaw = paTable[4][f]; break; case 5: powerRaw = paTable[5][f]; break; case 7: powerRaw = paTable[6][f]; break; case 10: powerRaw = paTable[7][f]; break; default: return(RADIOLIB_ERR_INVALID_OUTPUT_POWER); } // store the value _power = power; if(_modulation == RADIOLIB_CC1101_MOD_FORMAT_ASK_OOK){ // Amplitude modulation: // PA_TABLE[0] is the power to be used when transmitting a 0 (no power) // PA_TABLE[1] is the power to be used when transmitting a 1 (full power) uint8_t paValues[2] = {0x00, powerRaw}; SPIwriteRegisterBurst(RADIOLIB_CC1101_REG_PATABLE, paValues, 2); return(RADIOLIB_ERR_NONE); } else { // Freq modulation: // PA_TABLE[0] is the power to be used when transmitting. return(SPIsetRegValue(RADIOLIB_CC1101_REG_PATABLE, powerRaw)); } } int16_t CC1101::setSyncWord(uint8_t* syncWord, uint8_t len, uint8_t maxErrBits, bool requireCarrierSense) { if((maxErrBits > 1) || (len != 2)) { return(RADIOLIB_ERR_INVALID_SYNC_WORD); } // sync word must not contain value 0x00 for(uint8_t i = 0; i < len; i++) { if(syncWord[i] == 0x00) { return(RADIOLIB_ERR_INVALID_SYNC_WORD); } } _syncWordLength = len; // enable sync word filtering int16_t state = enableSyncWordFiltering(maxErrBits, requireCarrierSense); RADIOLIB_ASSERT(state); // set sync word register state = SPIsetRegValue(RADIOLIB_CC1101_REG_SYNC1, syncWord[0]); state |= SPIsetRegValue(RADIOLIB_CC1101_REG_SYNC0, syncWord[1]); return(state); } int16_t CC1101::setSyncWord(uint8_t syncH, uint8_t syncL, uint8_t maxErrBits, bool requireCarrierSense) { uint8_t syncWord[] = { syncH, syncL }; return(setSyncWord(syncWord, sizeof(syncWord), maxErrBits, requireCarrierSense)); } int16_t CC1101::setPreambleLength(uint8_t preambleLength) { // check allowed values uint8_t value; switch(preambleLength){ case 16: value = RADIOLIB_CC1101_NUM_PREAMBLE_2; break; case 24: value = RADIOLIB_CC1101_NUM_PREAMBLE_3; break; case 32: value = RADIOLIB_CC1101_NUM_PREAMBLE_4; break; case 48: value = RADIOLIB_CC1101_NUM_PREAMBLE_6; break; case 64: value = RADIOLIB_CC1101_NUM_PREAMBLE_8; break; case 96: value = RADIOLIB_CC1101_NUM_PREAMBLE_12; break; case 128: value = RADIOLIB_CC1101_NUM_PREAMBLE_16; break; case 192: value = RADIOLIB_CC1101_NUM_PREAMBLE_24; break; default: return(RADIOLIB_ERR_INVALID_PREAMBLE_LENGTH); } return SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG1, value, 6, 4); } int16_t CC1101::setNodeAddress(uint8_t nodeAddr, uint8_t numBroadcastAddrs) { RADIOLIB_CHECK_RANGE(numBroadcastAddrs, 1, 2, RADIOLIB_ERR_INVALID_NUM_BROAD_ADDRS); // enable address filtering int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, numBroadcastAddrs + 0x01, 1, 0); RADIOLIB_ASSERT(state); // set node address return(SPIsetRegValue(RADIOLIB_CC1101_REG_ADDR, nodeAddr)); } int16_t CC1101::disableAddressFiltering() { // disable address filtering int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL1, RADIOLIB_CC1101_ADR_CHK_NONE, 1, 0); RADIOLIB_ASSERT(state); // set node address to default (0x00) return(SPIsetRegValue(RADIOLIB_CC1101_REG_ADDR, 0x00)); } int16_t CC1101::setOOK(bool enableOOK) { // Change modulation if(enableOOK) { int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MOD_FORMAT_ASK_OOK, 6, 4); RADIOLIB_ASSERT(state); // PA_TABLE[0] is (by default) the power value used when transmitting a "0". // Set PA_TABLE[1] to be used when transmitting a "1". state = SPIsetRegValue(RADIOLIB_CC1101_REG_FREND0, 1, 2, 0); RADIOLIB_ASSERT(state); // update current modulation _modulation = RADIOLIB_CC1101_MOD_FORMAT_ASK_OOK; } else { int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MOD_FORMAT_2_FSK, 6, 4); RADIOLIB_ASSERT(state); // Reset FREND0 to default value. state = SPIsetRegValue(RADIOLIB_CC1101_REG_FREND0, 0, 2, 0); RADIOLIB_ASSERT(state); // update current modulation _modulation = RADIOLIB_CC1101_MOD_FORMAT_2_FSK; } // Update PA_TABLE values according to the new _modulation. return(setOutputPower(_power)); } float CC1101::getRSSI() { float rssi; if (_directMode) { if(_rawRSSI >= 128) { rssi = (((float)_rawRSSI - 256.0)/2.0) - 74.0; } else { rssi = (((float)_rawRSSI)/2.0) - 74.0; } } else { uint8_t rawRssi = SPIreadRegister(RADIOLIB_CC1101_REG_RSSI); if (rawRssi >= 128) { rssi = ((rawRssi - 256) / 2) - 74; } else { rssi = (rawRssi / 2) - 74; } } return(rssi); } uint8_t CC1101::getLQI() const { return(_rawLQI); } size_t CC1101::getPacketLength(bool update) { if(!_packetLengthQueried && update) { if (_packetLengthConfig == RADIOLIB_CC1101_LENGTH_CONFIG_VARIABLE) { _packetLength = SPIreadRegister(RADIOLIB_CC1101_REG_FIFO); } else { _packetLength = SPIreadRegister(RADIOLIB_CC1101_REG_PKTLEN); } _packetLengthQueried = true; } return(_packetLength); } int16_t CC1101::fixedPacketLengthMode(uint8_t len) { return(setPacketMode(RADIOLIB_CC1101_LENGTH_CONFIG_FIXED, len)); } int16_t CC1101::variablePacketLengthMode(uint8_t maxLen) { return(setPacketMode(RADIOLIB_CC1101_LENGTH_CONFIG_VARIABLE, maxLen)); } int16_t CC1101::enableSyncWordFiltering(uint8_t maxErrBits, bool requireCarrierSense) { switch(maxErrBits){ case 0: // in 16 bit sync word, expect all 16 bits return(SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, (requireCarrierSense ? RADIOLIB_CC1101_SYNC_MODE_16_16_THR : RADIOLIB_CC1101_SYNC_MODE_16_16), 2, 0)); case 1: // in 16 bit sync word, expect at least 15 bits return(SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, (requireCarrierSense ? RADIOLIB_CC1101_SYNC_MODE_15_16_THR : RADIOLIB_CC1101_SYNC_MODE_15_16), 2, 0)); default: return(RADIOLIB_ERR_INVALID_SYNC_WORD); } } int16_t CC1101::disableSyncWordFiltering(bool requireCarrierSense) { return(SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, (requireCarrierSense ? RADIOLIB_CC1101_SYNC_MODE_NONE_THR : RADIOLIB_CC1101_SYNC_MODE_NONE), 2, 0)); } int16_t CC1101::setCrcFiltering(bool crcOn) { _crcOn = crcOn; if (crcOn == true) { return(SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_CRC_ON, 2, 2)); } else { return(SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_CRC_OFF, 2, 2)); } } int16_t CC1101::setPromiscuousMode(bool promiscuous) { int16_t state = RADIOLIB_ERR_NONE; if (_promiscuous == promiscuous) { return(state); } if (promiscuous == true) { // disable preamble and sync word filtering and insertion state = disableSyncWordFiltering(); RADIOLIB_ASSERT(state); // disable CRC filtering state = setCrcFiltering(false); } else { // enable preamble and sync word filtering and insertion state = enableSyncWordFiltering(); RADIOLIB_ASSERT(state); // enable CRC filtering state = setCrcFiltering(true); } _promiscuous = promiscuous; return(state); } bool CC1101::getPromiscuousMode() { return (_promiscuous); } int16_t CC1101::setDataShaping(uint8_t sh) { // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // set data shaping switch(sh) { case RADIOLIB_SHAPING_NONE: state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MOD_FORMAT_2_FSK, 6, 4); break; case RADIOLIB_SHAPING_0_5: state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MOD_FORMAT_GFSK, 6, 4); break; default: return(RADIOLIB_ERR_INVALID_DATA_SHAPING); } return(state); } int16_t CC1101::setEncoding(uint8_t encoding) { // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // set encoding switch(encoding) { case RADIOLIB_ENCODING_NRZ: state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MANCHESTER_EN_OFF, 3, 3); RADIOLIB_ASSERT(state); return(SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_WHITE_DATA_OFF, 6, 6)); case RADIOLIB_ENCODING_MANCHESTER: state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MANCHESTER_EN_ON, 3, 3); RADIOLIB_ASSERT(state); return(SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_WHITE_DATA_OFF, 6, 6)); case RADIOLIB_ENCODING_WHITENING: state = SPIsetRegValue(RADIOLIB_CC1101_REG_MDMCFG2, RADIOLIB_CC1101_MANCHESTER_EN_OFF, 3, 3); RADIOLIB_ASSERT(state); return(SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_WHITE_DATA_ON, 6, 6)); default: return(RADIOLIB_ERR_INVALID_ENCODING); } } void CC1101::setRfSwitchPins(RADIOLIB_PIN_TYPE rxEn, RADIOLIB_PIN_TYPE txEn) { _mod->setRfSwitchPins(rxEn, txEn); } uint8_t CC1101::randomByte() { // set mode to Rx SPIsendCommand(RADIOLIB_CC1101_CMD_RX); RADIOLIB_DEBUG_PRINTLN("random"); // wait a bit for the RSSI reading to stabilise _mod->delay(10); // read RSSI value 8 times, always keep just the least significant bit uint8_t randByte = 0x00; for(uint8_t i = 0; i < 8; i++) { randByte |= ((SPIreadRegister(RADIOLIB_CC1101_REG_RSSI) & 0x01) << i); } // set mode to standby SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE); return(randByte); } int16_t CC1101::getChipVersion() { return(SPIgetRegValue(RADIOLIB_CC1101_REG_VERSION)); } #if !defined(RADIOLIB_EXCLUDE_DIRECT_RECEIVE) void CC1101::setDirectAction(void (*func)(void)) { setGdo0Action(func); } void CC1101::readBit(RADIOLIB_PIN_TYPE pin) { updateDirectBuffer((uint8_t)digitalRead(pin)); } #endif int16_t CC1101::setDIOMapping(RADIOLIB_PIN_TYPE pin, uint8_t value) { if (pin > 2) return RADIOLIB_ERR_INVALID_DIO_PIN; return(SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG0 - pin, value)); } int16_t CC1101::config() { // Reset the radio. Registers may be dirty from previous usage. SPIsendCommand(RADIOLIB_CC1101_CMD_RESET); // Wait a ridiculous amount of time to be sure radio is ready. _mod->delay(150); // enable automatic frequency synthesizer calibration int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_MCSM0, RADIOLIB_CC1101_FS_AUTOCAL_IDLE_TO_RXTX, 5, 4); RADIOLIB_ASSERT(state); // set packet mode state = packetMode(); return(state); } int16_t CC1101::directMode(bool sync) { // set mode to standby SPIsendCommand(RADIOLIB_CC1101_CMD_IDLE); int16_t state = 0; _directMode = sync; if (sync) { // set GDO0 and GDO2 mapping state |= SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG0, RADIOLIB_CC1101_GDOX_SERIAL_CLOCK , 5, 0); state |= SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG2, RADIOLIB_CC1101_GDOX_SERIAL_DATA_SYNC , 5, 0); // set continuous mode state |= SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_PKT_FORMAT_SYNCHRONOUS, 5, 4); } else { // set GDO0 mapping state |= SPIsetRegValue(RADIOLIB_CC1101_REG_IOCFG0, RADIOLIB_CC1101_GDOX_SERIAL_DATA_ASYNC , 5, 0); // set asynchronous continuous mode state |= SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_PKT_FORMAT_ASYNCHRONOUS, 5, 4); } state |= SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, RADIOLIB_CC1101_LENGTH_CONFIG_INFINITE, 1, 0); return(state); } void CC1101::getExpMant(float target, uint16_t mantOffset, uint8_t divExp, uint8_t expMax, uint8_t& exp, uint8_t& mant) { // get table origin point (exp = 0, mant = 0) float origin = (mantOffset * RADIOLIB_CC1101_CRYSTAL_FREQ * 1000000.0)/((uint32_t)1 << divExp); // iterate over possible exponent values for(int8_t e = expMax; e >= 0; e--) { // get table column start value (exp = e, mant = 0); float intervalStart = ((uint32_t)1 << e) * origin; // check if target value is in this column if(target >= intervalStart) { // save exponent value exp = e; // calculate size of step between table rows float stepSize = intervalStart/(float)mantOffset; // get target point position (exp = e, mant = m) mant = ((target - intervalStart) / stepSize); // we only need the first match, terminate return; } } } int16_t CC1101::setPacketMode(uint8_t mode, uint16_t len) { // check length if (len > RADIOLIB_CC1101_MAX_PACKET_LENGTH) { return(RADIOLIB_ERR_PACKET_TOO_LONG); } // set PKTCTRL0.LENGTH_CONFIG int16_t state = SPIsetRegValue(RADIOLIB_CC1101_REG_PKTCTRL0, mode, 1, 0); RADIOLIB_ASSERT(state); // set length to register state = SPIsetRegValue(RADIOLIB_CC1101_REG_PKTLEN, len); RADIOLIB_ASSERT(state); // update the cached value _packetLength = len; _packetLengthConfig = mode; return(state); } int16_t CC1101::SPIgetRegValue(uint8_t reg, uint8_t msb, uint8_t lsb) { // status registers require special command if(reg > RADIOLIB_CC1101_REG_TEST0) { reg |= RADIOLIB_CC1101_CMD_ACCESS_STATUS_REG; } return(_mod->SPIgetRegValue(reg, msb, lsb)); } int16_t CC1101::SPIsetRegValue(uint8_t reg, uint8_t value, uint8_t msb, uint8_t lsb, uint8_t checkInterval) { // status registers require special command if(reg > RADIOLIB_CC1101_REG_TEST0) { reg |= RADIOLIB_CC1101_CMD_ACCESS_STATUS_REG; } return(_mod->SPIsetRegValue(reg, value, msb, lsb, checkInterval)); } void CC1101::SPIreadRegisterBurst(uint8_t reg, uint8_t numBytes, uint8_t* inBytes) { _mod->SPIreadRegisterBurst(reg | RADIOLIB_CC1101_CMD_BURST, numBytes, inBytes); } uint8_t CC1101::SPIreadRegister(uint8_t reg) { // status registers require special command if(reg > RADIOLIB_CC1101_REG_TEST0) { reg |= RADIOLIB_CC1101_CMD_ACCESS_STATUS_REG; } return(_mod->SPIreadRegister(reg)); } void CC1101::SPIwriteRegister(uint8_t reg, uint8_t data) { // status registers require special command if(reg > RADIOLIB_CC1101_REG_TEST0) { reg |= RADIOLIB_CC1101_CMD_ACCESS_STATUS_REG; } return(_mod->SPIwriteRegister(reg, data)); } void CC1101::SPIwriteRegisterBurst(uint8_t reg, uint8_t* data, size_t len) { _mod->SPIwriteRegisterBurst(reg | RADIOLIB_CC1101_CMD_BURST, data, len); } void CC1101::SPIsendCommand(uint8_t cmd) { // pull NSS low _mod->digitalWrite(_mod->getCs(), LOW); // start transfer _mod->SPIbeginTransaction(); // send the command byte _mod->SPItransfer(cmd); // stop transfer _mod->SPIendTransaction(); _mod->digitalWrite(_mod->getCs(), HIGH); } #endif