RadioLibSmol/src/modules/Si443x/Si443x.cpp

714 lines
21 KiB
C++

#include "Si443x.h"
#if !defined(RADIOLIB_EXCLUDE_SI443X)
Si443x::Si443x(Module* mod) : PhysicalLayer(SI443X_FREQUENCY_STEP_SIZE, SI443X_MAX_PACKET_LENGTH) {
_mod = mod;
}
int16_t Si443x::begin(float br, float freqDev, float rxBw, uint8_t preambleLen) {
// set module properties
_mod->init(RADIOLIB_USE_SPI);
Module::pinMode(_mod->getIrq(), INPUT);
Module::pinMode(_mod->getRst(), OUTPUT);
Module::digitalWrite(_mod->getRst(), LOW);
// try to find the Si443x chip
if(!Si443x::findChip()) {
RADIOLIB_DEBUG_PRINTLN(F("No Si443x found!"));
_mod->term(RADIOLIB_USE_SPI);
return(ERR_CHIP_NOT_FOUND);
} else {
RADIOLIB_DEBUG_PRINTLN(F("Found Si443x!"));
}
// clear POR interrupt
clearIRQFlags();
// configure settings not accessible by API
int16_t state = config();
RADIOLIB_ASSERT(state);
// configure publicly accessible settings
state = setBitRate(br);
RADIOLIB_ASSERT(state);
state = setFrequencyDeviation(freqDev);
RADIOLIB_ASSERT(state);
state = setRxBandwidth(rxBw);
RADIOLIB_ASSERT(state);
state = setPreambleLength(preambleLen);
RADIOLIB_ASSERT(state);
uint8_t syncWord[] = {0x12, 0xAD};
state = setSyncWord(syncWord, sizeof(syncWord));
RADIOLIB_ASSERT(state);
state = packetMode();
RADIOLIB_ASSERT(state);
state = setDataShaping(0);
RADIOLIB_ASSERT(state);
state = setEncoding(0);
RADIOLIB_ASSERT(state);
return(state);
}
void Si443x::reset() {
Module::pinMode(_mod->getRst(), OUTPUT);
Module::digitalWrite(_mod->getRst(), HIGH);
delay(1);
Module::digitalWrite(_mod->getRst(), LOW);
delay(100);
}
int16_t Si443x::transmit(uint8_t* data, size_t len, uint8_t addr) {
// calculate timeout (5ms + 500 % of expected time-on-air)
uint32_t timeout = 5000000 + (uint32_t)((((float)(len * 8)) / (_br * 1000.0)) * 5000000.0);
// start transmission
int16_t state = startTransmit(data, len, addr);
RADIOLIB_ASSERT(state);
// wait for transmission end or timeout
uint32_t start = micros();
while(digitalRead(_mod->getIrq())) {
yield();
if(micros() - start > timeout) {
standby();
clearIRQFlags();
return(ERR_TX_TIMEOUT);
}
}
// set mode to standby
state = standby();
// clear interrupt flags
clearIRQFlags();
return(state);
}
int16_t Si443x::receive(uint8_t* data, size_t len) {
// calculate timeout (500 ms + 400 full 64-byte packets at current bit rate)
uint32_t timeout = 500000 + (1.0/(_br*1000.0))*(SI443X_MAX_PACKET_LENGTH*400.0);
// start reception
int16_t state = startReceive();
RADIOLIB_ASSERT(state);
// wait for packet reception or timeout
uint32_t start = micros();
while(digitalRead(_mod->getIrq())) {
if(micros() - start > timeout) {
standby();
clearIRQFlags();
return(ERR_RX_TIMEOUT);
}
}
// read packet data
return(readData(data, len));
}
int16_t Si443x::sleep() {
// set RF switch (if present)
_mod->setRfSwitchState(LOW, LOW);
// disable wakeup timer interrupt
int16_t state = _mod->SPIsetRegValue(SI443X_REG_INTERRUPT_ENABLE_1, 0x00);
RADIOLIB_ASSERT(state);
state = _mod->SPIsetRegValue(SI443X_REG_INTERRUPT_ENABLE_2, 0x00);
RADIOLIB_ASSERT(state);
// enable wakeup timer to set mode to sleep
_mod->SPIwriteRegister(SI443X_REG_OP_FUNC_CONTROL_1, SI443X_ENABLE_WAKEUP_TIMER);
return(state);
}
int16_t Si443x::standby() {
// set RF switch (if present)
_mod->setRfSwitchState(LOW, LOW);
return(_mod->SPIsetRegValue(SI443X_REG_OP_FUNC_CONTROL_1, SI443X_XTAL_ON, 7, 0, 10));
}
int16_t Si443x::transmitDirect(uint32_t frf) {
// set RF switch (if present)
_mod->setRfSwitchState(LOW, HIGH);
// user requested to start transmitting immediately (required for RTTY)
if(frf != 0) {
// convert the 24-bit frequency to the format accepted by the module
// TODO integers only
float newFreq = frf / 6400.0;
// check high/low band
uint8_t bandSelect = SI443X_BAND_SELECT_LOW;
uint8_t freqBand = (newFreq / 10) - 24;
if(newFreq >= 480.0) {
bandSelect = SI443X_BAND_SELECT_HIGH;
freqBand = (newFreq / 20) - 24;
}
// calculate register values
uint16_t freqCarrier = ((newFreq / (10 * ((bandSelect >> 5) + 1))) - freqBand - 24) * (uint32_t)64000;
// update registers
_mod->SPIwriteRegister(SI443X_REG_FREQUENCY_BAND_SELECT, SI443X_SIDE_BAND_SELECT_LOW | bandSelect | freqBand);
_mod->SPIwriteRegister(SI443X_REG_NOM_CARRIER_FREQUENCY_1, (uint8_t)((freqCarrier & 0xFF00) >> 8));
_mod->SPIwriteRegister(SI443X_REG_NOM_CARRIER_FREQUENCY_0, (uint8_t)(freqCarrier & 0xFF));
// start direct transmission
directMode();
_mod->SPIwriteRegister(SI443X_REG_OP_FUNC_CONTROL_1, SI443X_TX_ON);
return(ERR_NONE);
}
// activate direct mode
int16_t state = directMode();
RADIOLIB_ASSERT(state);
// start transmitting
_mod->SPIwriteRegister(SI443X_REG_OP_FUNC_CONTROL_1, SI443X_TX_ON);
return(state);
}
int16_t Si443x::receiveDirect() {
// set RF switch (if present)
_mod->setRfSwitchState(HIGH, LOW);
// activate direct mode
int16_t state = directMode();
RADIOLIB_ASSERT(state);
// start receiving
_mod->SPIwriteRegister(SI443X_REG_OP_FUNC_CONTROL_1, SI443X_RX_ON);
return(state);
}
int16_t Si443x::packetMode() {
return(_mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_2, SI443X_TX_DATA_SOURCE_FIFO, 5, 4));
}
void Si443x::setIrqAction(void (*func)(void)) {
attachInterrupt(RADIOLIB_DIGITAL_PIN_TO_INTERRUPT(_mod->getIrq()), func, FALLING);
}
void Si443x::clearIrqAction() {
detachInterrupt(RADIOLIB_DIGITAL_PIN_TO_INTERRUPT(_mod->getIrq()));
}
int16_t Si443x::startTransmit(uint8_t* data, size_t len, uint8_t addr) {
// check packet length
if(len > SI443X_MAX_PACKET_LENGTH) {
return(ERR_PACKET_TOO_LONG);
}
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// clear Tx FIFO
_mod->SPIsetRegValue(SI443X_REG_OP_FUNC_CONTROL_2, SI443X_TX_FIFO_RESET, 0, 0);
_mod->SPIsetRegValue(SI443X_REG_OP_FUNC_CONTROL_2, SI443X_TX_FIFO_CLEAR, 0, 0);
// set interrupt mapping
state = _mod->SPIsetRegValue(SI443X_REG_INTERRUPT_ENABLE_1, SI443X_PACKET_SENT_ENABLED);
RADIOLIB_ASSERT(state);
// clear interrupt flags
clearIRQFlags();
// set packet length
// TODO variable packet length
_mod->SPIwriteRegister(SI443X_REG_TRANSMIT_PACKET_LENGTH, len);
// TODO use header as address field?
(void)addr;
// write packet to FIFO
_mod->SPIwriteRegisterBurst(SI443X_REG_FIFO_ACCESS, data, len);
// set RF switch (if present)
_mod->setRfSwitchState(LOW, HIGH);
// set mode to transmit
_mod->SPIwriteRegister(SI443X_REG_OP_FUNC_CONTROL_1, SI443X_TX_ON);
return(state);
}
int16_t Si443x::startReceive() {
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// clear Rx FIFO
_mod->SPIsetRegValue(SI443X_REG_OP_FUNC_CONTROL_2, SI443X_RX_FIFO_RESET, 1, 1);
_mod->SPIsetRegValue(SI443X_REG_OP_FUNC_CONTROL_2, SI443X_RX_FIFO_CLEAR, 1, 1);
// set interrupt mapping
state = _mod->SPIsetRegValue(SI443X_REG_INTERRUPT_ENABLE_1, SI443X_VALID_PACKET_RECEIVED_ENABLED, SI443X_CRC_ERROR_ENABLED);
RADIOLIB_ASSERT(state);
state = _mod->SPIsetRegValue(SI443X_REG_INTERRUPT_ENABLE_2, 0x00);
RADIOLIB_ASSERT(state);
// clear interrupt flags
clearIRQFlags();
// set RF switch (if present)
_mod->setRfSwitchState(HIGH, LOW);
// set mode to receive
_mod->SPIwriteRegister(SI443X_REG_OP_FUNC_CONTROL_1, SI443X_RX_ON);
return(state);
}
int16_t Si443x::readData(uint8_t* data, size_t len) {
// clear interrupt flags
clearIRQFlags();
// get packet length
size_t length = len;
if(len == SI443X_MAX_PACKET_LENGTH) {
length = getPacketLength();
}
// read packet data
_mod->SPIreadRegisterBurst(SI443X_REG_FIFO_ACCESS, length, data);
// clear internal flag so getPacketLength can return the new packet length
_packetLengthQueried = false;
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// clear interrupt flags
clearIRQFlags();
return(ERR_NONE);
}
int16_t Si443x::setBitRate(float br) {
RADIOLIB_CHECK_RANGE(br, 0.123, 256.0, ERR_INVALID_BIT_RATE);
// check high data rate
uint8_t dataRateMode = SI443X_LOW_DATA_RATE_MODE;
uint8_t exp = 21;
if(br >= 30.0) {
// bit rate above 30 kbps
dataRateMode = SI443X_HIGH_DATA_RATE_MODE;
exp = 16;
}
// calculate raw data rate value
uint16_t txDr = (br * ((uint32_t)1 << exp)) / 1000.0;
// update registers
int16_t state = _mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_1, dataRateMode, 5, 5);
_mod->SPIwriteRegister(SI443X_REG_TX_DATA_RATE_1, (uint8_t)((txDr & 0xFF00) >> 8));
_mod->SPIwriteRegister(SI443X_REG_TX_DATA_RATE_0, (uint8_t)(txDr & 0xFF));
if(state == ERR_NONE) {
_br = br;
}
RADIOLIB_ASSERT(state);
// update clock recovery
state = updateClockRecovery();
return(state);
}
int16_t Si443x::setFrequencyDeviation(float freqDev) {
// set frequency deviation to lowest available setting (required for RTTY)
if(freqDev == 0.0) {
int16_t state = _mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_2, 0x00, 2, 2);
_mod->SPIwriteRegister(SI443X_REG_FREQUENCY_DEVIATION, 0x00);
if(state == ERR_NONE) {
_freqDev = freqDev;
}
}
RADIOLIB_CHECK_RANGE(freqDev, 0.625, 320.0, ERR_INVALID_FREQUENCY_DEVIATION);
// calculate raw frequency deviation value
uint16_t fdev = (uint16_t)(freqDev / 0.625);
// update registers
int16_t state = _mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_2, (uint8_t)((fdev & 0x0100) >> 6), 2, 2);
_mod->SPIwriteRegister(SI443X_REG_FREQUENCY_DEVIATION, (uint8_t)(fdev & 0xFF));
if(state == ERR_NONE) {
_freqDev = freqDev;
}
return(state);
}
int16_t Si443x::setRxBandwidth(float rxBw) {
RADIOLIB_CHECK_RANGE(rxBw, 2.6, 620.7, ERR_INVALID_RX_BANDWIDTH);
// decide which approximation to use for decimation rate and filter tap calculation
uint8_t bypass = SI443X_BYPASS_DEC_BY_3_OFF;
uint8_t decRate = SI443X_IF_FILTER_DEC_RATE;
uint8_t filterSet = SI443X_IF_FILTER_COEFF_SET;
// this is the "well-behaved" section - can be linearly approximated
if((rxBw >= 2.6) && (rxBw <= 4.5)) {
decRate = 5;
filterSet = ((rxBw - 2.1429)/0.3250 + 0.5);
} else if((rxBw > 4.5) && (rxBw <= 8.8)) {
decRate = 4;
filterSet = ((rxBw - 3.9857)/0.6643 + 0.5);
} else if((rxBw > 8.8) && (rxBw <= 17.5)) {
decRate = 3;
filterSet = ((rxBw - 7.6714)/1.3536 + 0.5);
} else if((rxBw > 17.5) && (rxBw <= 34.7)) {
decRate = 2;
filterSet = ((rxBw - 15.2000)/2.6893 + 0.5);
} else if((rxBw > 34.7) && (rxBw <= 69.2)) {
decRate = 1;
filterSet = ((rxBw - 30.2430)/5.3679 + 0.5);
} else if((rxBw > 69.2) && (rxBw <= 137.9)) {
decRate = 0;
filterSet = ((rxBw - 60.286)/10.7000 + 0.5);
// this is the "Lord help thee who tread 'ere" section - no way to approximate this mess
} else if(rxBw == 142.8) {
bypass = SI443X_BYPASS_DEC_BY_3_ON;
decRate = 1;
filterSet = 4;
} else if(rxBw == 167.8) {
bypass = SI443X_BYPASS_DEC_BY_3_ON;
decRate = 1;
filterSet = 5;
} else if(rxBw == 181.1) {
bypass = SI443X_BYPASS_DEC_BY_3_ON;
decRate = 1;
filterSet = 6;
} else if(rxBw == 191.5) {
bypass = SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 15;
} else if(rxBw == 225.1) {
bypass = SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 1;
} else if(rxBw == 248.8) {
bypass = SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 2;
} else if(rxBw == 269.3) {
bypass = SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 3;
} else if(rxBw == 284.8) {
bypass = SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 4;
} else if(rxBw == 335.5) {
bypass = SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 8;
} else if(rxBw == 391.8) {
bypass = SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 9;
} else if(rxBw == 420.2) {
bypass = SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 10;
} else if(rxBw == 468.4) {
bypass = SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 11;
} else if(rxBw == 518.8) {
bypass = SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 12;
} else if(rxBw == 577.0) {
bypass = SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 13;
} else if(rxBw == 620.7) {
bypass = SI443X_BYPASS_DEC_BY_3_ON;
decRate = 0;
filterSet = 14;
} else {
return(ERR_INVALID_RX_BANDWIDTH);
}
// shift decimation rate bits
decRate <<= 4;
// update register
int16_t state = _mod->SPIsetRegValue(SI443X_REG_IF_FILTER_BANDWIDTH, bypass | decRate | filterSet);
RADIOLIB_ASSERT(state);
// update clock recovery
state = updateClockRecovery();
return(state);
}
int16_t Si443x::setSyncWord(uint8_t* syncWord, size_t len) {
RADIOLIB_CHECK_RANGE(len, 1, 4, ERR_INVALID_SYNC_WORD);
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// set sync word length
state = _mod->SPIsetRegValue(SI443X_REG_HEADER_CONTROL_2, (uint8_t)(len - 1) << 1, 2, 1);
RADIOLIB_ASSERT(state);
// set sync word bytes
_mod->SPIwriteRegisterBurst(SI443X_REG_SYNC_WORD_3, syncWord, len);
return(state);
}
int16_t Si443x::setPreambleLength(uint8_t preambleLen) {
// Si443x configures preamble length in bytes
if(preambleLen % 8 != 0) {
return(ERR_INVALID_PREAMBLE_LENGTH);
}
// set default preamble length
uint8_t preLenBytes = preambleLen / 8;
int16_t state = _mod->SPIsetRegValue(SI443X_REG_PREAMBLE_LENGTH, preLenBytes);
RADIOLIB_ASSERT(state);
// set default preamble detection threshold to 50% of preamble length (in units of 4 bits)
uint8_t preThreshold = preambleLen / 4;
return(_mod->SPIsetRegValue(SI443X_REG_PREAMBLE_DET_CONTROL, preThreshold << 4, 3, 7));
}
size_t Si443x::getPacketLength(bool update) {
// TODO variable length mode
if(!_packetLengthQueried && update) {
_packetLength = _mod->SPIreadRegister(SI443X_REG_RECEIVED_PACKET_LENGTH);
_packetLengthQueried = true;
}
return(_packetLength);
}
int16_t Si443x::setEncoding(uint8_t encoding) {
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// set encoding
// TODO - add inverted Manchester?
switch(encoding) {
case RADIOLIB_ENCODING_NRZ:
return(_mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_1, SI443X_MANCHESTER_INVERTED_OFF | SI443X_MANCHESTER_OFF | SI443X_WHITENING_OFF, 2, 0));
case RADIOLIB_ENCODING_MANCHESTER:
return(_mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_1, SI443X_MANCHESTER_INVERTED_OFF | SI443X_MANCHESTER_ON | SI443X_WHITENING_OFF, 2, 0));
case RADIOLIB_ENCODING_WHITENING:
return(_mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_1, SI443X_MANCHESTER_INVERTED_OFF | SI443X_MANCHESTER_OFF | SI443X_WHITENING_ON, 2, 0));
default:
return(ERR_INVALID_ENCODING);
}
}
int16_t Si443x::setDataShaping(uint8_t sh) {
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// set data shaping
switch(sh) {
case RADIOLIB_SHAPING_NONE:
return(_mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_1, SI443X_MANCHESTER_INVERTED_OFF | SI443X_MANCHESTER_OFF | SI443X_WHITENING_OFF, 2, 0));
case RADIOLIB_SHAPING_0_3:
case RADIOLIB_SHAPING_0_5:
case RADIOLIB_SHAPING_1_0:
// TODO implement fiter configuration - docs claim this should be possible, but seems undocumented
return(_mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_1, SI443X_MANCHESTER_INVERTED_OFF | SI443X_MANCHESTER_OFF | SI443X_WHITENING_ON, 2, 0));
default:
return(ERR_INVALID_ENCODING);
}
}
void Si443x::setRfSwitchPins(RADIOLIB_PIN_TYPE rxEn, RADIOLIB_PIN_TYPE txEn) {
_mod->setRfSwitchPins(rxEn, txEn);
}
int16_t Si443x::setFrequencyRaw(float newFreq) {
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// check high/low band
uint8_t bandSelect = SI443X_BAND_SELECT_LOW;
uint8_t freqBand = (newFreq / 10) - 24;
if(newFreq >= 480.0) {
bandSelect = SI443X_BAND_SELECT_HIGH;
freqBand = (newFreq / 20) - 24;
}
// calculate register values
uint16_t freqCarrier = ((newFreq / (10 * ((bandSelect >> 5) + 1))) - freqBand - 24) * (uint32_t)64000;
// update registers
state = _mod->SPIsetRegValue(SI443X_REG_FREQUENCY_BAND_SELECT, bandSelect | freqBand, 5, 0);
state |= _mod->SPIsetRegValue(SI443X_REG_NOM_CARRIER_FREQUENCY_1, (uint8_t)((freqCarrier & 0xFF00) >> 8));
state |= _mod->SPIsetRegValue(SI443X_REG_NOM_CARRIER_FREQUENCY_0, (uint8_t)(freqCarrier & 0xFF));
return(state);
}
bool Si443x::findChip() {
uint8_t i = 0;
bool flagFound = false;
while((i < 10) && !flagFound) {
// reset the module
reset();
// check version register
uint8_t version = _mod->SPIreadRegister(SI443X_REG_DEVICE_VERSION);
if(version == SI443X_DEVICE_VERSION) {
flagFound = true;
} else {
#ifdef RADIOLIB_DEBUG
RADIOLIB_DEBUG_PRINT(F("Si443x not found! ("));
RADIOLIB_DEBUG_PRINT(i + 1);
RADIOLIB_DEBUG_PRINT(F(" of 10 tries) SI443X_REG_DEVICE_VERSION == "));
char buffHex[5];
sprintf(buffHex, "0x%02X", version);
RADIOLIB_DEBUG_PRINT(buffHex);
RADIOLIB_DEBUG_PRINT(F(", expected 0x00"));
RADIOLIB_DEBUG_PRINTLN(SI443X_DEVICE_VERSION, HEX);
#endif
delay(10);
i++;
}
}
return(flagFound);
}
void Si443x::clearIRQFlags() {
_mod->SPIreadRegister(SI443X_REG_INTERRUPT_STATUS_1);
_mod->SPIreadRegister(SI443X_REG_INTERRUPT_STATUS_2);
}
int16_t Si443x::config() {
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// disable POR and chip ready interrupts
state = _mod->SPIsetRegValue(SI443X_REG_INTERRUPT_ENABLE_2, 0x00);
RADIOLIB_ASSERT(state);
// disable packet header
state = _mod->SPIsetRegValue(SI443X_REG_HEADER_CONTROL_2, SI443X_SYNC_WORD_TIMEOUT_ON | SI443X_HEADER_LENGTH_HEADER_NONE, 7, 4);
RADIOLIB_ASSERT(state);
// disable packet header checking
state = _mod->SPIsetRegValue(SI443X_REG_HEADER_CONTROL_1, SI443X_BROADCAST_ADDR_CHECK_NONE | SI443X_RECEIVED_HEADER_CHECK_NONE);
RADIOLIB_ASSERT(state);
return(state);
}
int16_t Si443x::updateClockRecovery() {
// get the parameters
uint8_t bypass = _mod->SPIgetRegValue(SI443X_REG_IF_FILTER_BANDWIDTH, 7, 7) >> 7;
uint8_t decRate = _mod->SPIgetRegValue(SI443X_REG_IF_FILTER_BANDWIDTH, 6, 4) >> 4;
uint8_t manch = _mod->SPIgetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_1, 1, 1) >> 1;
// calculate oversampling ratio, NCO offset and clock recovery gain
float rxOsr = ((float)(500 * (1 + 2*bypass))) / (((float)((uint16_t)(1) << decRate)) * _br * ((float)(1 + manch)));
uint32_t ncoOff = (_br * (1 + manch) * ((uint32_t)(1) << (20 + decRate))) / (500 * (1 + 2*bypass));
uint16_t crGain = 2 + (((float)(65536.0 * (1 + manch)) * _br) / (rxOsr * (_freqDev / 0.625)));
// convert oversampling ratio from float to fixed point
uint8_t rxOsr_int = (uint8_t)rxOsr;
uint8_t rxOsr_dec = 0;
float rxOsr_temp = rxOsr;
if((rxOsr_temp - rxOsr_int) >= 0.5) {
rxOsr_dec |= 0x04;
rxOsr_temp -= 0.5;
}
if((rxOsr_temp - rxOsr_int) >= 0.25) {
rxOsr_dec |= 0x02;
rxOsr_temp -= 0.25;
}
if((rxOsr_temp - rxOsr_int) >= 0.125) {
rxOsr_dec |= 0x01;
}
uint16_t rxOsr_fixed = ((uint16_t)rxOsr_int << 3) | ((uint16_t)rxOsr_dec);
// print that whole mess
RADIOLIB_DEBUG_PRINTLN(bypass, HEX);
RADIOLIB_DEBUG_PRINTLN(decRate, HEX);
RADIOLIB_DEBUG_PRINTLN(manch, HEX);
RADIOLIB_DEBUG_PRINT(rxOsr, 3);
RADIOLIB_DEBUG_PRINT('\t');
RADIOLIB_DEBUG_PRINT(rxOsr_int);
RADIOLIB_DEBUG_PRINT('\t');
RADIOLIB_DEBUG_PRINT(rxOsr_int, HEX);
RADIOLIB_DEBUG_PRINT('\t');
RADIOLIB_DEBUG_PRINT(rxOsr_dec);
RADIOLIB_DEBUG_PRINT('\t');
RADIOLIB_DEBUG_PRINT(rxOsr_dec, HEX);
RADIOLIB_DEBUG_PRINT('\t');
RADIOLIB_DEBUG_PRINT(rxOsr_fixed);
RADIOLIB_DEBUG_PRINT('\t');
RADIOLIB_DEBUG_PRINTLN(rxOsr_fixed, HEX);
RADIOLIB_DEBUG_PRINT(ncoOff);
RADIOLIB_DEBUG_PRINT('\t');
RADIOLIB_DEBUG_PRINTLN(ncoOff, HEX);
RADIOLIB_DEBUG_PRINT(crGain);
RADIOLIB_DEBUG_PRINT('\t');
RADIOLIB_DEBUG_PRINTLN(crGain, HEX);
// update oversampling ratio
int16_t state = _mod->SPIsetRegValue(SI443X_REG_CLOCK_REC_OFFSET_2, (uint8_t)((rxOsr_fixed & 0x0700) >> 3), 7, 5);
RADIOLIB_ASSERT(state);
state = _mod->SPIsetRegValue(SI443X_REG_CLOCK_REC_OVERSAMP_RATIO, (uint8_t)(rxOsr_fixed & 0x00FF));
RADIOLIB_ASSERT(state);
// update NCO offset
state = _mod->SPIsetRegValue(SI443X_REG_CLOCK_REC_OFFSET_2, (uint8_t)((ncoOff & 0x0F0000) >> 16), 3, 0);
RADIOLIB_ASSERT(state);
state = _mod->SPIsetRegValue(SI443X_REG_CLOCK_REC_OFFSET_1, (uint8_t)((ncoOff & 0x00FF00) >> 8));
RADIOLIB_ASSERT(state);
state = _mod->SPIsetRegValue(SI443X_REG_CLOCK_REC_OFFSET_0, (uint8_t)(ncoOff & 0x0000FF));
RADIOLIB_ASSERT(state);
// update clock recovery loop gain
state = _mod->SPIsetRegValue(SI443X_REG_CLOCK_REC_TIMING_LOOP_GAIN_1, (uint8_t)((crGain & 0x0700) >> 8), 2, 0);
RADIOLIB_ASSERT(state);
state = _mod->SPIsetRegValue(SI443X_REG_CLOCK_REC_TIMING_LOOP_GAIN_0, (uint8_t)(crGain & 0x00FF));
RADIOLIB_ASSERT(state);
return(state);
}
int16_t Si443x::directMode() {
int16_t state = _mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_2, SI443X_TX_DATA_SOURCE_GPIO, 5, 4);
RADIOLIB_ASSERT(state);
state = _mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_2, SI443X_MODULATION_NONE, 1, 0);
return(state);
}
#endif