#include "Si443x.h" #if !defined(RADIOLIB_EXCLUDE_SI443X) Si443x::Si443x(Module* mod) : PhysicalLayer(SI443X_FREQUENCY_STEP_SIZE, SI443X_MAX_PACKET_LENGTH) { _mod = mod; } int16_t Si443x::begin(float br, float freqDev, float rxBw, uint8_t preambleLen) { // set module properties _mod->init(RADIOLIB_USE_SPI); Module::pinMode(_mod->getIrq(), INPUT); Module::pinMode(_mod->getRst(), OUTPUT); Module::digitalWrite(_mod->getRst(), LOW); // try to find the Si443x chip if(!Si443x::findChip()) { RADIOLIB_DEBUG_PRINTLN(F("No Si443x found!")); _mod->term(RADIOLIB_USE_SPI); return(ERR_CHIP_NOT_FOUND); } else { RADIOLIB_DEBUG_PRINTLN(F("Found Si443x!")); } // clear POR interrupt clearIRQFlags(); // configure settings not accessible by API int16_t state = config(); RADIOLIB_ASSERT(state); // configure publicly accessible settings state = setBitRate(br); RADIOLIB_ASSERT(state); state = setFrequencyDeviation(freqDev); RADIOLIB_ASSERT(state); state = setRxBandwidth(rxBw); RADIOLIB_ASSERT(state); state = setPreambleLength(preambleLen); RADIOLIB_ASSERT(state); uint8_t syncWord[] = {0x12, 0xAD}; state = setSyncWord(syncWord, sizeof(syncWord)); RADIOLIB_ASSERT(state); state = packetMode(); RADIOLIB_ASSERT(state); state = setDataShaping(0); RADIOLIB_ASSERT(state); state = setEncoding(0); RADIOLIB_ASSERT(state); return(state); } void Si443x::reset() { Module::pinMode(_mod->getRst(), OUTPUT); Module::digitalWrite(_mod->getRst(), HIGH); delay(1); Module::digitalWrite(_mod->getRst(), LOW); delay(100); } int16_t Si443x::transmit(uint8_t* data, size_t len, uint8_t addr) { // calculate timeout (5ms + 500 % of expected time-on-air) uint32_t timeout = 5000000 + (uint32_t)((((float)(len * 8)) / (_br * 1000.0)) * 5000000.0); // start transmission int16_t state = startTransmit(data, len, addr); RADIOLIB_ASSERT(state); // wait for transmission end or timeout uint32_t start = micros(); while(digitalRead(_mod->getIrq())) { yield(); if(micros() - start > timeout) { standby(); clearIRQFlags(); return(ERR_TX_TIMEOUT); } } // set mode to standby state = standby(); // clear interrupt flags clearIRQFlags(); return(state); } int16_t Si443x::receive(uint8_t* data, size_t len) { // calculate timeout (500 ms + 400 full 64-byte packets at current bit rate) uint32_t timeout = 500000 + (1.0/(_br*1000.0))*(SI443X_MAX_PACKET_LENGTH*400.0); // start reception int16_t state = startReceive(); RADIOLIB_ASSERT(state); // wait for packet reception or timeout uint32_t start = micros(); while(digitalRead(_mod->getIrq())) { if(micros() - start > timeout) { standby(); clearIRQFlags(); return(ERR_RX_TIMEOUT); } } // read packet data return(readData(data, len)); } int16_t Si443x::sleep() { // set RF switch (if present) _mod->setRfSwitchState(LOW, LOW); // disable wakeup timer interrupt int16_t state = _mod->SPIsetRegValue(SI443X_REG_INTERRUPT_ENABLE_1, 0x00); RADIOLIB_ASSERT(state); state = _mod->SPIsetRegValue(SI443X_REG_INTERRUPT_ENABLE_2, 0x00); RADIOLIB_ASSERT(state); // enable wakeup timer to set mode to sleep _mod->SPIwriteRegister(SI443X_REG_OP_FUNC_CONTROL_1, SI443X_ENABLE_WAKEUP_TIMER); return(state); } int16_t Si443x::standby() { // set RF switch (if present) _mod->setRfSwitchState(LOW, LOW); return(_mod->SPIsetRegValue(SI443X_REG_OP_FUNC_CONTROL_1, SI443X_XTAL_ON, 7, 0, 10)); } int16_t Si443x::transmitDirect(uint32_t frf) { // set RF switch (if present) _mod->setRfSwitchState(LOW, HIGH); // user requested to start transmitting immediately (required for RTTY) if(frf != 0) { // convert the 24-bit frequency to the format accepted by the module // TODO integers only float newFreq = frf / 6400.0; // check high/low band uint8_t bandSelect = SI443X_BAND_SELECT_LOW; uint8_t freqBand = (newFreq / 10) - 24; if(newFreq >= 480.0) { bandSelect = SI443X_BAND_SELECT_HIGH; freqBand = (newFreq / 20) - 24; } // calculate register values uint16_t freqCarrier = ((newFreq / (10 * ((bandSelect >> 5) + 1))) - freqBand - 24) * (uint32_t)64000; // update registers _mod->SPIwriteRegister(SI443X_REG_FREQUENCY_BAND_SELECT, SI443X_SIDE_BAND_SELECT_LOW | bandSelect | freqBand); _mod->SPIwriteRegister(SI443X_REG_NOM_CARRIER_FREQUENCY_1, (uint8_t)((freqCarrier & 0xFF00) >> 8)); _mod->SPIwriteRegister(SI443X_REG_NOM_CARRIER_FREQUENCY_0, (uint8_t)(freqCarrier & 0xFF)); // start direct transmission directMode(); _mod->SPIwriteRegister(SI443X_REG_OP_FUNC_CONTROL_1, SI443X_TX_ON); return(ERR_NONE); } // activate direct mode int16_t state = directMode(); RADIOLIB_ASSERT(state); // start transmitting _mod->SPIwriteRegister(SI443X_REG_OP_FUNC_CONTROL_1, SI443X_TX_ON); return(state); } int16_t Si443x::receiveDirect() { // set RF switch (if present) _mod->setRfSwitchState(HIGH, LOW); // activate direct mode int16_t state = directMode(); RADIOLIB_ASSERT(state); // start receiving _mod->SPIwriteRegister(SI443X_REG_OP_FUNC_CONTROL_1, SI443X_RX_ON); return(state); } int16_t Si443x::packetMode() { return(_mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_2, SI443X_TX_DATA_SOURCE_FIFO, 5, 4)); } void Si443x::setIrqAction(void (*func)(void)) { attachInterrupt(RADIOLIB_DIGITAL_PIN_TO_INTERRUPT(_mod->getIrq()), func, FALLING); } void Si443x::clearIrqAction() { detachInterrupt(RADIOLIB_DIGITAL_PIN_TO_INTERRUPT(_mod->getIrq())); } int16_t Si443x::startTransmit(uint8_t* data, size_t len, uint8_t addr) { // check packet length if(len > SI443X_MAX_PACKET_LENGTH) { return(ERR_PACKET_TOO_LONG); } // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // clear Tx FIFO _mod->SPIsetRegValue(SI443X_REG_OP_FUNC_CONTROL_2, SI443X_TX_FIFO_RESET, 0, 0); _mod->SPIsetRegValue(SI443X_REG_OP_FUNC_CONTROL_2, SI443X_TX_FIFO_CLEAR, 0, 0); // set interrupt mapping state = _mod->SPIsetRegValue(SI443X_REG_INTERRUPT_ENABLE_1, SI443X_PACKET_SENT_ENABLED); RADIOLIB_ASSERT(state); // clear interrupt flags clearIRQFlags(); // set packet length // TODO variable packet length _mod->SPIwriteRegister(SI443X_REG_TRANSMIT_PACKET_LENGTH, len); // TODO use header as address field? (void)addr; // write packet to FIFO _mod->SPIwriteRegisterBurst(SI443X_REG_FIFO_ACCESS, data, len); // set RF switch (if present) _mod->setRfSwitchState(LOW, HIGH); // set mode to transmit _mod->SPIwriteRegister(SI443X_REG_OP_FUNC_CONTROL_1, SI443X_TX_ON); return(state); } int16_t Si443x::startReceive() { // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // clear Rx FIFO _mod->SPIsetRegValue(SI443X_REG_OP_FUNC_CONTROL_2, SI443X_RX_FIFO_RESET, 1, 1); _mod->SPIsetRegValue(SI443X_REG_OP_FUNC_CONTROL_2, SI443X_RX_FIFO_CLEAR, 1, 1); // set interrupt mapping state = _mod->SPIsetRegValue(SI443X_REG_INTERRUPT_ENABLE_1, SI443X_VALID_PACKET_RECEIVED_ENABLED, SI443X_CRC_ERROR_ENABLED); RADIOLIB_ASSERT(state); state = _mod->SPIsetRegValue(SI443X_REG_INTERRUPT_ENABLE_2, 0x00); RADIOLIB_ASSERT(state); // clear interrupt flags clearIRQFlags(); // set RF switch (if present) _mod->setRfSwitchState(HIGH, LOW); // set mode to receive _mod->SPIwriteRegister(SI443X_REG_OP_FUNC_CONTROL_1, SI443X_RX_ON); return(state); } int16_t Si443x::readData(uint8_t* data, size_t len) { // clear interrupt flags clearIRQFlags(); // get packet length size_t length = len; if(len == SI443X_MAX_PACKET_LENGTH) { length = getPacketLength(); } // read packet data _mod->SPIreadRegisterBurst(SI443X_REG_FIFO_ACCESS, length, data); // clear internal flag so getPacketLength can return the new packet length _packetLengthQueried = false; // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // clear interrupt flags clearIRQFlags(); return(ERR_NONE); } int16_t Si443x::setBitRate(float br) { RADIOLIB_CHECK_RANGE(br, 0.123, 256.0, ERR_INVALID_BIT_RATE); // check high data rate uint8_t dataRateMode = SI443X_LOW_DATA_RATE_MODE; uint8_t exp = 21; if(br >= 30.0) { // bit rate above 30 kbps dataRateMode = SI443X_HIGH_DATA_RATE_MODE; exp = 16; } // calculate raw data rate value uint16_t txDr = (br * ((uint32_t)1 << exp)) / 1000.0; // update registers int16_t state = _mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_1, dataRateMode, 5, 5); _mod->SPIwriteRegister(SI443X_REG_TX_DATA_RATE_1, (uint8_t)((txDr & 0xFF00) >> 8)); _mod->SPIwriteRegister(SI443X_REG_TX_DATA_RATE_0, (uint8_t)(txDr & 0xFF)); if(state == ERR_NONE) { _br = br; } RADIOLIB_ASSERT(state); // update clock recovery state = updateClockRecovery(); return(state); } int16_t Si443x::setFrequencyDeviation(float freqDev) { // set frequency deviation to lowest available setting (required for RTTY) if(freqDev == 0.0) { int16_t state = _mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_2, 0x00, 2, 2); _mod->SPIwriteRegister(SI443X_REG_FREQUENCY_DEVIATION, 0x00); if(state == ERR_NONE) { _freqDev = freqDev; } } RADIOLIB_CHECK_RANGE(freqDev, 0.625, 320.0, ERR_INVALID_FREQUENCY_DEVIATION); // calculate raw frequency deviation value uint16_t fdev = (uint16_t)(freqDev / 0.625); // update registers int16_t state = _mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_2, (uint8_t)((fdev & 0x0100) >> 6), 2, 2); _mod->SPIwriteRegister(SI443X_REG_FREQUENCY_DEVIATION, (uint8_t)(fdev & 0xFF)); if(state == ERR_NONE) { _freqDev = freqDev; } return(state); } int16_t Si443x::setRxBandwidth(float rxBw) { RADIOLIB_CHECK_RANGE(rxBw, 2.6, 620.7, ERR_INVALID_RX_BANDWIDTH); // decide which approximation to use for decimation rate and filter tap calculation uint8_t bypass = SI443X_BYPASS_DEC_BY_3_OFF; uint8_t decRate = SI443X_IF_FILTER_DEC_RATE; uint8_t filterSet = SI443X_IF_FILTER_COEFF_SET; // this is the "well-behaved" section - can be linearly approximated if((rxBw >= 2.6) && (rxBw <= 4.5)) { decRate = 5; filterSet = ((rxBw - 2.1429)/0.3250 + 0.5); } else if((rxBw > 4.5) && (rxBw <= 8.8)) { decRate = 4; filterSet = ((rxBw - 3.9857)/0.6643 + 0.5); } else if((rxBw > 8.8) && (rxBw <= 17.5)) { decRate = 3; filterSet = ((rxBw - 7.6714)/1.3536 + 0.5); } else if((rxBw > 17.5) && (rxBw <= 34.7)) { decRate = 2; filterSet = ((rxBw - 15.2000)/2.6893 + 0.5); } else if((rxBw > 34.7) && (rxBw <= 69.2)) { decRate = 1; filterSet = ((rxBw - 30.2430)/5.3679 + 0.5); } else if((rxBw > 69.2) && (rxBw <= 137.9)) { decRate = 0; filterSet = ((rxBw - 60.286)/10.7000 + 0.5); // this is the "Lord help thee who tread 'ere" section - no way to approximate this mess } else if(rxBw == 142.8) { bypass = SI443X_BYPASS_DEC_BY_3_ON; decRate = 1; filterSet = 4; } else if(rxBw == 167.8) { bypass = SI443X_BYPASS_DEC_BY_3_ON; decRate = 1; filterSet = 5; } else if(rxBw == 181.1) { bypass = SI443X_BYPASS_DEC_BY_3_ON; decRate = 1; filterSet = 6; } else if(rxBw == 191.5) { bypass = SI443X_BYPASS_DEC_BY_3_ON; decRate = 0; filterSet = 15; } else if(rxBw == 225.1) { bypass = SI443X_BYPASS_DEC_BY_3_ON; decRate = 0; filterSet = 1; } else if(rxBw == 248.8) { bypass = SI443X_BYPASS_DEC_BY_3_ON; decRate = 0; filterSet = 2; } else if(rxBw == 269.3) { bypass = SI443X_BYPASS_DEC_BY_3_ON; decRate = 0; filterSet = 3; } else if(rxBw == 284.8) { bypass = SI443X_BYPASS_DEC_BY_3_ON; decRate = 0; filterSet = 4; } else if(rxBw == 335.5) { bypass = SI443X_BYPASS_DEC_BY_3_ON; decRate = 0; filterSet = 8; } else if(rxBw == 391.8) { bypass = SI443X_BYPASS_DEC_BY_3_ON; decRate = 0; filterSet = 9; } else if(rxBw == 420.2) { bypass = SI443X_BYPASS_DEC_BY_3_ON; decRate = 0; filterSet = 10; } else if(rxBw == 468.4) { bypass = SI443X_BYPASS_DEC_BY_3_ON; decRate = 0; filterSet = 11; } else if(rxBw == 518.8) { bypass = SI443X_BYPASS_DEC_BY_3_ON; decRate = 0; filterSet = 12; } else if(rxBw == 577.0) { bypass = SI443X_BYPASS_DEC_BY_3_ON; decRate = 0; filterSet = 13; } else if(rxBw == 620.7) { bypass = SI443X_BYPASS_DEC_BY_3_ON; decRate = 0; filterSet = 14; } else { return(ERR_INVALID_RX_BANDWIDTH); } // shift decimation rate bits decRate <<= 4; // update register int16_t state = _mod->SPIsetRegValue(SI443X_REG_IF_FILTER_BANDWIDTH, bypass | decRate | filterSet); RADIOLIB_ASSERT(state); // update clock recovery state = updateClockRecovery(); return(state); } int16_t Si443x::setSyncWord(uint8_t* syncWord, size_t len) { RADIOLIB_CHECK_RANGE(len, 1, 4, ERR_INVALID_SYNC_WORD); // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // set sync word length state = _mod->SPIsetRegValue(SI443X_REG_HEADER_CONTROL_2, (uint8_t)(len - 1) << 1, 2, 1); RADIOLIB_ASSERT(state); // set sync word bytes _mod->SPIwriteRegisterBurst(SI443X_REG_SYNC_WORD_3, syncWord, len); return(state); } int16_t Si443x::setPreambleLength(uint8_t preambleLen) { // Si443x configures preamble length in bytes if(preambleLen % 8 != 0) { return(ERR_INVALID_PREAMBLE_LENGTH); } // set default preamble length uint8_t preLenBytes = preambleLen / 8; int16_t state = _mod->SPIsetRegValue(SI443X_REG_PREAMBLE_LENGTH, preLenBytes); RADIOLIB_ASSERT(state); // set default preamble detection threshold to 50% of preamble length (in units of 4 bits) uint8_t preThreshold = preambleLen / 4; return(_mod->SPIsetRegValue(SI443X_REG_PREAMBLE_DET_CONTROL, preThreshold << 4, 3, 7)); } size_t Si443x::getPacketLength(bool update) { // TODO variable length mode if(!_packetLengthQueried && update) { _packetLength = _mod->SPIreadRegister(SI443X_REG_RECEIVED_PACKET_LENGTH); _packetLengthQueried = true; } return(_packetLength); } int16_t Si443x::setEncoding(uint8_t encoding) { // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // set encoding // TODO - add inverted Manchester? switch(encoding) { case RADIOLIB_ENCODING_NRZ: return(_mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_1, SI443X_MANCHESTER_INVERTED_OFF | SI443X_MANCHESTER_OFF | SI443X_WHITENING_OFF, 2, 0)); case RADIOLIB_ENCODING_MANCHESTER: return(_mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_1, SI443X_MANCHESTER_INVERTED_OFF | SI443X_MANCHESTER_ON | SI443X_WHITENING_OFF, 2, 0)); case RADIOLIB_ENCODING_WHITENING: return(_mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_1, SI443X_MANCHESTER_INVERTED_OFF | SI443X_MANCHESTER_OFF | SI443X_WHITENING_ON, 2, 0)); default: return(ERR_INVALID_ENCODING); } } int16_t Si443x::setDataShaping(uint8_t sh) { // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // set data shaping switch(sh) { case RADIOLIB_SHAPING_NONE: return(_mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_1, SI443X_MANCHESTER_INVERTED_OFF | SI443X_MANCHESTER_OFF | SI443X_WHITENING_OFF, 2, 0)); case RADIOLIB_SHAPING_0_3: case RADIOLIB_SHAPING_0_5: case RADIOLIB_SHAPING_1_0: // TODO implement fiter configuration - docs claim this should be possible, but seems undocumented return(_mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_1, SI443X_MANCHESTER_INVERTED_OFF | SI443X_MANCHESTER_OFF | SI443X_WHITENING_ON, 2, 0)); default: return(ERR_INVALID_ENCODING); } } void Si443x::setRfSwitchPins(RADIOLIB_PIN_TYPE rxEn, RADIOLIB_PIN_TYPE txEn) { _mod->setRfSwitchPins(rxEn, txEn); } int16_t Si443x::setFrequencyRaw(float newFreq) { // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // check high/low band uint8_t bandSelect = SI443X_BAND_SELECT_LOW; uint8_t freqBand = (newFreq / 10) - 24; if(newFreq >= 480.0) { bandSelect = SI443X_BAND_SELECT_HIGH; freqBand = (newFreq / 20) - 24; } // calculate register values uint16_t freqCarrier = ((newFreq / (10 * ((bandSelect >> 5) + 1))) - freqBand - 24) * (uint32_t)64000; // update registers state = _mod->SPIsetRegValue(SI443X_REG_FREQUENCY_BAND_SELECT, bandSelect | freqBand, 5, 0); state |= _mod->SPIsetRegValue(SI443X_REG_NOM_CARRIER_FREQUENCY_1, (uint8_t)((freqCarrier & 0xFF00) >> 8)); state |= _mod->SPIsetRegValue(SI443X_REG_NOM_CARRIER_FREQUENCY_0, (uint8_t)(freqCarrier & 0xFF)); return(state); } bool Si443x::findChip() { uint8_t i = 0; bool flagFound = false; while((i < 10) && !flagFound) { // reset the module reset(); // check version register uint8_t version = _mod->SPIreadRegister(SI443X_REG_DEVICE_VERSION); if(version == SI443X_DEVICE_VERSION) { flagFound = true; } else { #ifdef RADIOLIB_DEBUG RADIOLIB_DEBUG_PRINT(F("Si443x not found! (")); RADIOLIB_DEBUG_PRINT(i + 1); RADIOLIB_DEBUG_PRINT(F(" of 10 tries) SI443X_REG_DEVICE_VERSION == ")); char buffHex[5]; sprintf(buffHex, "0x%02X", version); RADIOLIB_DEBUG_PRINT(buffHex); RADIOLIB_DEBUG_PRINT(F(", expected 0x00")); RADIOLIB_DEBUG_PRINTLN(SI443X_DEVICE_VERSION, HEX); #endif delay(10); i++; } } return(flagFound); } void Si443x::clearIRQFlags() { _mod->SPIreadRegister(SI443X_REG_INTERRUPT_STATUS_1); _mod->SPIreadRegister(SI443X_REG_INTERRUPT_STATUS_2); } int16_t Si443x::config() { // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // disable POR and chip ready interrupts state = _mod->SPIsetRegValue(SI443X_REG_INTERRUPT_ENABLE_2, 0x00); RADIOLIB_ASSERT(state); // disable packet header state = _mod->SPIsetRegValue(SI443X_REG_HEADER_CONTROL_2, SI443X_SYNC_WORD_TIMEOUT_ON | SI443X_HEADER_LENGTH_HEADER_NONE, 7, 4); RADIOLIB_ASSERT(state); // disable packet header checking state = _mod->SPIsetRegValue(SI443X_REG_HEADER_CONTROL_1, SI443X_BROADCAST_ADDR_CHECK_NONE | SI443X_RECEIVED_HEADER_CHECK_NONE); RADIOLIB_ASSERT(state); return(state); } int16_t Si443x::updateClockRecovery() { // get the parameters uint8_t bypass = _mod->SPIgetRegValue(SI443X_REG_IF_FILTER_BANDWIDTH, 7, 7) >> 7; uint8_t decRate = _mod->SPIgetRegValue(SI443X_REG_IF_FILTER_BANDWIDTH, 6, 4) >> 4; uint8_t manch = _mod->SPIgetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_1, 1, 1) >> 1; // calculate oversampling ratio, NCO offset and clock recovery gain float rxOsr = ((float)(500 * (1 + 2*bypass))) / (((float)((uint16_t)(1) << decRate)) * _br * ((float)(1 + manch))); uint32_t ncoOff = (_br * (1 + manch) * ((uint32_t)(1) << (20 + decRate))) / (500 * (1 + 2*bypass)); uint16_t crGain = 2 + (((float)(65536.0 * (1 + manch)) * _br) / (rxOsr * (_freqDev / 0.625))); // convert oversampling ratio from float to fixed point uint8_t rxOsr_int = (uint8_t)rxOsr; uint8_t rxOsr_dec = 0; float rxOsr_temp = rxOsr; if((rxOsr_temp - rxOsr_int) >= 0.5) { rxOsr_dec |= 0x04; rxOsr_temp -= 0.5; } if((rxOsr_temp - rxOsr_int) >= 0.25) { rxOsr_dec |= 0x02; rxOsr_temp -= 0.25; } if((rxOsr_temp - rxOsr_int) >= 0.125) { rxOsr_dec |= 0x01; } uint16_t rxOsr_fixed = ((uint16_t)rxOsr_int << 3) | ((uint16_t)rxOsr_dec); // print that whole mess RADIOLIB_DEBUG_PRINTLN(bypass, HEX); RADIOLIB_DEBUG_PRINTLN(decRate, HEX); RADIOLIB_DEBUG_PRINTLN(manch, HEX); RADIOLIB_DEBUG_PRINT(rxOsr, 3); RADIOLIB_DEBUG_PRINT('\t'); RADIOLIB_DEBUG_PRINT(rxOsr_int); RADIOLIB_DEBUG_PRINT('\t'); RADIOLIB_DEBUG_PRINT(rxOsr_int, HEX); RADIOLIB_DEBUG_PRINT('\t'); RADIOLIB_DEBUG_PRINT(rxOsr_dec); RADIOLIB_DEBUG_PRINT('\t'); RADIOLIB_DEBUG_PRINT(rxOsr_dec, HEX); RADIOLIB_DEBUG_PRINT('\t'); RADIOLIB_DEBUG_PRINT(rxOsr_fixed); RADIOLIB_DEBUG_PRINT('\t'); RADIOLIB_DEBUG_PRINTLN(rxOsr_fixed, HEX); RADIOLIB_DEBUG_PRINT(ncoOff); RADIOLIB_DEBUG_PRINT('\t'); RADIOLIB_DEBUG_PRINTLN(ncoOff, HEX); RADIOLIB_DEBUG_PRINT(crGain); RADIOLIB_DEBUG_PRINT('\t'); RADIOLIB_DEBUG_PRINTLN(crGain, HEX); // update oversampling ratio int16_t state = _mod->SPIsetRegValue(SI443X_REG_CLOCK_REC_OFFSET_2, (uint8_t)((rxOsr_fixed & 0x0700) >> 3), 7, 5); RADIOLIB_ASSERT(state); state = _mod->SPIsetRegValue(SI443X_REG_CLOCK_REC_OVERSAMP_RATIO, (uint8_t)(rxOsr_fixed & 0x00FF)); RADIOLIB_ASSERT(state); // update NCO offset state = _mod->SPIsetRegValue(SI443X_REG_CLOCK_REC_OFFSET_2, (uint8_t)((ncoOff & 0x0F0000) >> 16), 3, 0); RADIOLIB_ASSERT(state); state = _mod->SPIsetRegValue(SI443X_REG_CLOCK_REC_OFFSET_1, (uint8_t)((ncoOff & 0x00FF00) >> 8)); RADIOLIB_ASSERT(state); state = _mod->SPIsetRegValue(SI443X_REG_CLOCK_REC_OFFSET_0, (uint8_t)(ncoOff & 0x0000FF)); RADIOLIB_ASSERT(state); // update clock recovery loop gain state = _mod->SPIsetRegValue(SI443X_REG_CLOCK_REC_TIMING_LOOP_GAIN_1, (uint8_t)((crGain & 0x0700) >> 8), 2, 0); RADIOLIB_ASSERT(state); state = _mod->SPIsetRegValue(SI443X_REG_CLOCK_REC_TIMING_LOOP_GAIN_0, (uint8_t)(crGain & 0x00FF)); RADIOLIB_ASSERT(state); return(state); } int16_t Si443x::directMode() { int16_t state = _mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_2, SI443X_TX_DATA_SOURCE_GPIO, 5, 4); RADIOLIB_ASSERT(state); state = _mod->SPIsetRegValue(SI443X_REG_MODULATION_MODE_CONTROL_2, SI443X_MODULATION_NONE, 1, 0); return(state); } #endif