RadioLibSmol/examples/SX127x/SX127x_Transmit_FHSS/SX127x_Transmit_FHSS.ino
2022-01-13 12:25:02 -07:00

124 lines
3.9 KiB
C++

/*
RadioLib SX127x Transmit with Frequency Hopping Example
This example transmits packets using SX1278 LoRa radio module.
Each packet contains up to 256 bytes of data, in the form of:
- Arduino String
- null-terminated char array (C-string)
- arbitrary binary data (byte array)
Other modules from SX127x/RFM9x family can also be used.
For default module settings, see the wiki page
https://github.com/jgromes/RadioLib/wiki/Default-configuration#sx127xrfm9x---lora-modem
For full API reference, see the GitHub Pages
https://jgromes.github.io/RadioLib/
The SX1276 / 7 / 8 / 9 supports FHSS or Frequency Hopping Spread Spectrum.
Once a hopping period is set and a transmission is started the radio
will begin triggering interrupts every hop period where the radio frequency
is changed to the next channel. This allows a simple mechanism to abide by
the FCC 400ms max dwell time rule.
https://www.govinfo.gov/content/pkg/CFR-2019-title47-vol1/pdf/CFR-2019-title47-vol1-sec15-247.pdf
*/
#include <RadioLib.h> //Click here to get the library: http://librarymanager/All#RadioLib
//Pins for SparkFun 1W EBYTE Breakout to Uno
int pin_cs = 7;
int pin_dio0 = 3;
int pin_dio1 = 2;
int pin_rst = A2;
SX1276 radio = new Module(pin_cs, pin_dio0, pin_rst, pin_dio1);
volatile bool xmitComplete = false;
volatile bool fhssChange = false;
//The channel frequencies can be generated randomly or hard coded
float channels[] = {908.0, 906.0, 907.0, 905.0, 903.0, 910.0, 909.0};
int numberOfChannels = sizeof(channels) / sizeof(float);
int hopsCompleted = 0;
int counter = 0;
void setup()
{
Serial.begin(115200);
//Begin radio on home channel
Serial.print(F("[SX127x] Initializing ... "));
int state = radio.begin(channels[0]);
if (state != RADIOLIB_ERR_NONE)
{
Serial.print(F("Failed with code: "));
Serial.println(state);
}
else
Serial.println(F("Success!"));
// Set hop period to enable FHSS
// We set an artifically short period to show lots of hops
// HoppingPeriod = Tsym * FreqHoppingPeriod
// Given defaults of spreadfactor = 9, bandwidth = 125, it follows Tsym = 4.10ms
// HoppingPeriod = 4.10 * 9 = 36.9ms. Can be as high as 400ms to be within regulatory limits
radio.setFHSSHoppingPeriod(9);
Serial.print(F("Hopping period: "));
Serial.println(radio.getFHSSHoppingPeriod());
radio.setDio0Action(dio0ISR); //Called when transmission is finished
radio.setDio1Action(dio1ISR); //Called after a transmission has started, so we can move to next freq
Serial.print(F("Transmitting packet..."));
char output[256];
sprintf(output, "Let's create a really long packet to trigger lots of hop interrupts. A packet can be up to 256 bytes long. This packet is 222 bytes so using sf = 9, bw = 125, timeOnAir is 1488ms. 1488ms / (9*4.10ms) = 40 hops. Counter: %d", counter++);
radio.startTransmit(output, strlen(output) - 1);
}
void loop()
{
if (xmitComplete == true)
{
xmitComplete = false;
Serial.println(F("Transmit complete"));
Serial.print(F("Radio after xmit is on channel: "));
Serial.println(radio.getFHSSChannel());
//The FHSS channel is automatically reset to 0 upon end of transmission
radio.setFrequency(channels[radio.getFHSSChannel() % numberOfChannels]); //Return to home channel before next transaction
Serial.print(F("Hops completed: "));
Serial.println(hopsCompleted);
hopsCompleted = 0;
radio.startReceive();
}
if (fhssChange == true)
{
radio.setFrequency(channels[radio.getFHSSChannel() % numberOfChannels]);
//Serial.print(F("Radio on channel: "));
//Serial.println(radio.getFHSSChannel());
hopsCompleted++;
fhssChange = false;
radio.clearFHSSInt();
}
}
//ISR when DIO0 goes low
//Called when transmission is complete or when RX is received
void dio0ISR(void)
{
xmitComplete = true;
}
//ISR when DIO1 goes low
//Called when FhssChangeChannel interrupt occurs (at regular HoppingPeriods)
void dio1ISR(void)
{
fhssChange = true;
}