[nRF24][WIP] Added nRF24 files

This commit is contained in:
jgromes 2019-05-29 10:55:42 +02:00
parent f85e7b2489
commit f9958ff83d
4 changed files with 576 additions and 0 deletions

View file

@ -0,0 +1,102 @@
/*
RadioLib nRF24 Transmit Example
*/
// include the library
#include <RadioLib.h>
// nRF24 is in slot A on the shield
nRF24 nrf = RadioShield.ModuleA;
void setup() {
Serial.begin(9600);
// initialize nRF24
Serial.print(F("[nRF24] Initializing ... "));
// carrier frequency: 2400 MHz
// data rate: 1000 kbps
// address width: 5 bytes
int state = nrf.begin();
if(state == ERR_NONE) {
Serial.println(F("success!"));
} else {
Serial.print(F("failed, code "));
Serial.println(state);
while(true);
}
// set receive pipe 0 address
// NOTE: address width in bytes MUST be equal to the
// width set in begin() or setAddressWidth()
// methods (5 by default)
Serial.print(F("[nRF24] Setting address for receive pipe 0 ... "));
byte receiveAddr0[] = {0x05, 0x06, 0x07, 0x08, 0x09};
state = nrf.setReceivePipe(0, receiveAddr0);
if(state == ERR_NONE) {
Serial.println(F("success!"));
} else {
Serial.print(F("failed, code "));
Serial.println(state);
while(true);
}
// set receive pipe 1 - 5 address
// NOTE: unlike receive pipe 0, pipes 1 - 5 are only
// distinguished by their least significant byte,
// the upper bytes will be the same!
Serial.print(F("[nRF24] Setting addresses for receive pipes 1 - 5 ... "));
byte receiveAddr1[] = {0xAA, 0xBB, 0xCC, 0xDD, 0xE1};
// set pipe 1 address
state = nrf.setReceivePipe(1, receiveAddr1);
// set the addresses for rest of pipes
state |= nrf.setReceivePipe(2, 0xE2);
state |= nrf.setReceivePipe(3, 0xE3);
state |= nrf.setReceivePipe(4, 0xE4);
state |= nrf.setReceivePipe(5, 0xE5);
if(state == ERR_NONE) {
Serial.println(F("success!"));
} else {
Serial.print(F("failed, code "));
Serial.println(state);
while(true);
}
// pipes 1 - 5 are automatically enabled upon address
// change, but can be disabled manually
Serial.print(F("[nRF24] Disabling pipes 2 - 5 ... "));
state = nrf.disablePipe(2);
if(state == ERR_NONE) {
Serial.println(F("success!"));
} else {
Serial.print(F("failed, code "));
Serial.println(state);
while(true);
}
}
void loop() {
Serial.print(F("[nRF24] Transmitting packet ... "));
// set transmit address
// NOTE: address width in bytes MUST be equal to the
// width set in begin() or setAddressWidth()
// methods (5 by default)
byte addr[] = {0x00, 0x01, 0x02, 0x03, 0x04};
// you can transmit C-string or Arduino string up to
// 32 characters long
int state = nrf.transmit("Hello World!", addr);
if (state == ERR_NONE) {
// the packet was successfully transmitted
Serial.println(" success!");
} else if (state == ERR_PACKET_TOO_LONG) {
// the supplied packet was longer than 256 bytes
Serial.println(" too long!");
}
// wait for a second before transmitting again
delay(1000);
}

View file

@ -42,6 +42,7 @@
#include "modules/ESP8266.h"
#include "modules/HC05.h"
#include "modules/JDY08.h"
#include "modules/nRF24.h"
#include "modules/RF69.h"
#include "modules/RFM95.h"
#include "modules/RFM96.h"

282
src/modules/nRF24.cpp Normal file
View file

@ -0,0 +1,282 @@
#include "nRF24.h"
nRF24::nRF24(Module* mod) {
_mod = mod;
}
int16_t nRF24::begin(int16_t freq, int16_t dataRate, uint8_t addrWidth) {
// set module properties
_mod->SPIreadCommand = NRF24_CMD_READ;
_mod->SPIwriteCommand = NRF24_CMD_WRITE;
_mod->init(USE_SPI, INT_BOTH);
// override pin mode on INT0 (connected to nRF24 CE pin)
pinMode(_mod->getInt0(), OUTPUT);
// set frequency
int16_t state = setFrequency(freq);
if(state != ERR_NONE) {
return(state);
}
// set data rate
state = setDataRate(dataRate);
if(state != ERR_NONE) {
return(state);
}
// set address width
state = setAddressWidth(addrWidth);
if(state != ERR_NONE) {
return(state);
}
return(state);
}
int16_t nRF24::sleep() {
return(_mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_POWER_DOWN, 1, 1));
}
int16_t nRF24::standby() {
return(_mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_POWER_UP, 1, 1));
}
int16_t nRF24::transmit(String& str, uint8_t* addr) {
return(nRF24::transmit(str.c_str(), addr));
}
int16_t nRF24::transmit(const char* str, uint8_t* addr) {
return(nRF24::transmit((uint8_t*)str, strlen(str), addr));
}
int16_t nRF24::transmit(uint8_t* data, size_t len, uint8_t* addr) {
// set mode to standby
int16_t state = standby();
if(state != ERR_NONE) {
return(state);
}
// reverse address byte order (LSB must be written first)
uint8_t* addrReversed = new uint8_t[_addrWidth];
for(uint8_t i = 0; i < _addrWidth; i++) {
addrReversed[i] = addr[_addrWidth - 1 - i];
}
// set transmit address
_mod->SPIwriteRegisterBurst(NRF24_REG_TX_ADDR, addrReversed, _addrWidth);
// check packet length
if(len > 32) {
return(ERR_PACKET_TOO_LONG);
}
// enable Tx_DataSent interrupt
state = _mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_MASK_RX_DR_IRQ_OFF | NRF24_MASK_TX_DS_IRQ_ON | NRF24_MASK_MAX_RT_IRQ_OFF, 6, 4);
// fill Tx FIFO
SPIwriteTxPayload(data, len);
// enable primary Tx mode
state |= _mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_PTX, 0, 0);
// CE high to start transmitting
digitalWrite(_mod->getInt0(), HIGH);
// wait until transmission is finished
while(digitalRead(_mod->getInt1()));
// CE low
digitalWrite(_mod->getInt0(), LOW);
// clear interrupt
clearIRQ();
return(state);
}
int16_t nRF24::setFrequency(int16_t freq) {
// check allowed range
if(!((freq >= 2400) && (freq <= 2525))) {
return(ERR_INVALID_FREQUENCY);
}
// set mode to standby
int16_t state = standby();
if(state != ERR_NONE) {
return(state);
}
// set frequency
uint8_t freqRaw = freq - 2400;
state = _mod->SPIsetRegValue(NRF24_REG_RF_CH, freqRaw, 6, 0);
return(state);
}
int16_t nRF24::setDataRate(int16_t dataRate) {
// set mode to standby
int16_t state = standby();
if(state != ERR_NONE) {
return(state);
}
// set data rate
if(dataRate == 250) {
state = _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_DR_250_KBPS, 5, 5);
state |= _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_DR_250_KBPS, 3, 3);
} else if(dataRate == 1000) {
state = _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_DR_1_MBPS, 5, 5);
state |= _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_DR_1_MBPS, 3, 3);
} else if(dataRate == 2000) {
state = _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_DR_2_MBPS, 5, 5);
state |= _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_DR_2_MBPS, 3, 3);
} else {
return(ERR_INVALID_DATA_RATE);
}
return(state);
}
int16_t nRF24::setAddressWidth(uint8_t addrWidth) {
// set mode to standby
int16_t state = standby();
if(state != ERR_NONE) {
return(state);
}
// set address width
switch(addrWidth) {
case 3:
state = _mod->SPIsetRegValue(NRF24_REG_SETUP_AW, NRF24_ADDRESS_3_BYTES, 1, 0);
break;
case 4:
state = _mod->SPIsetRegValue(NRF24_REG_SETUP_AW, NRF24_ADDRESS_4_BYTES, 1, 0);
break;
case 5:
state = _mod->SPIsetRegValue(NRF24_REG_SETUP_AW, NRF24_ADDRESS_5_BYTES, 1, 0);
break;
default:
return(ERR_INVALID_ADDRESS_WIDTH);
}
// save address width
_addrWidth = addrWidth;
return(state);
}
int16_t nRF24::setReceivePipe(uint8_t pipeNum, uint8_t* addr) {
// set mode to standby
int16_t state = standby();
if(state != ERR_NONE) {
return(state);
}
// reverse byte order (LSB must be written first)
uint8_t* addrReversed = new uint8_t[_addrWidth];
for(uint8_t i = 0; i < _addrWidth; i++) {
addrReversed[i] = addr[_addrWidth - 1 - i];
}
// write full pipe 0 - 1 address and enable the pipe
switch(pipeNum) {
case 0:
_mod->SPIwriteRegisterBurst(NRF24_REG_RX_ADDR_P0, addrReversed, _addrWidth);
state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P0_ON, 0, 0);
case 1:
_mod->SPIwriteRegisterBurst(NRF24_REG_RX_ADDR_P1, addrReversed, _addrWidth);
state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P1_ON, 1, 1);
break;
default:
return(ERR_INVALID_PIPE_NUMBER);
}
return(state);
}
int16_t nRF24::setReceivePipe(uint8_t pipeNum, uint8_t addrByte) {
// set mode to standby
int16_t state = standby();
if(state != ERR_NONE) {
return(state);
}
// write unique pipe 2 - 5 address and enable the pipe
switch(pipeNum) {
case 2:
state = _mod->SPIsetRegValue(NRF24_REG_RX_ADDR_P2, addrByte);
state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P2_ON, 2, 2);
break;
case 3:
state = _mod->SPIsetRegValue(NRF24_REG_RX_ADDR_P3, addrByte);
state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P3_ON, 3, 3);
break;
case 4:
state = _mod->SPIsetRegValue(NRF24_REG_RX_ADDR_P4, addrByte);
state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P4_ON, 4, 4);
break;
case 5:
state = _mod->SPIsetRegValue(NRF24_REG_RX_ADDR_P5, addrByte);
state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P5_ON, 5, 5);
break;
default:
return(ERR_INVALID_PIPE_NUMBER);
}
return(state);
}
int16_t nRF24::disablePipe(uint8_t pipeNum) {
// set mode to standby
int16_t state = standby();
if(state != ERR_NONE) {
return(state);
}
switch(pipeNum) {
case 0:
state = _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P0_OFF, 0, 0);
break;
case 1:
state = _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P1_OFF, 1, 1);
break;
case 2:
state = _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P2_OFF, 2, 2);
break;
case 3:
state = _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P3_OFF, 3, 3);
break;
case 4:
state = _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P4_OFF, 4, 4);
break;
case 5:
state = _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P5_OFF, 5, 5);
break;
default:
return(ERR_INVALID_PIPE_NUMBER);
}
return(state);
}
void nRF24::SPIreadRxPayload(uint8_t numBytes, uint8_t* inBytes) {
digitalWrite(_mod->getCs(), LOW);
SPI.transfer(NRF24_CMD_READ_RX_PAYLOAD);
for(uint8_t i = 0; i < numBytes; i++) {
inBytes[i] = SPI.transfer(0x00);
}
digitalWrite(_mod->getCs(), HIGH);
}
void nRF24::SPIwriteTxPayload(uint8_t* data, uint8_t numBytes) {
digitalWrite(_mod->getCs(), LOW);
SPI.transfer(NRF24_CMD_WRITE_TX_PAYLOAD);
for(uint8_t i = 0; i < numBytes; i++) {
SPI.transfer(data[i]);
}
digitalWrite(_mod->getCs(), HIGH);
}
void nRF24::clearIRQ() {
_mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_MASK_RX_DR_IRQ_OFF | NRF24_MASK_TX_DS_IRQ_OFF | NRF24_MASK_MAX_RT_IRQ_OFF, 6, 4);
}

191
src/modules/nRF24.h Normal file
View file

@ -0,0 +1,191 @@
#ifndef _RADIOLIB_NRF24_H
#define _RADIOLIB_NRF24_H
#include "Module.h"
// nRF24 SPI commands
#define NRF24_CMD_READ 0b00000000
#define NRF24_CMD_WRITE 0b00100000
#define NRF24_CMD_READ_RX_PAYLOAD 0b01100001
#define NRF24_CMD_WRITE_TX_PAYLOAD 0b10100000
#define NRF24_CMD_FLUSH_TX 0b11100001
#define NRF24_CMD_FLUSH_RX 0b11100010
#define NRF24_CMD_REUSE_TX_PAXLOAD 0b11100011
#define NRF24_CMD_READ_RX_PAYLOAD_WIDTH 0b01100000
#define NRF24_CMD_WRITE_ACK_PAYLOAD 0b10101000
#define NRF24_CMD_WRITE_TX_PAYLOAD_NOACK 0b10110000
#define NRF24_CMD_NOP 0b11111111
// nRF24 register map
#define NRF24_REG_CONFIG 0x00
#define NRF24_REG_EN_AA 0x01
#define NRF24_REG_EN_RXADDR 0x02
#define NRF24_REG_SETUP_AW 0x03
#define NRF24_REG_SETUP_RETR 0x04
#define NRF24_REG_RF_CH 0x05
#define NRF24_REG_RF_SETUP 0x06
#define NRF24_REG_STATUS 0x07
#define NRF24_REG_OBSERVE_TX 0x08
#define NRF24_REG_RPD 0x09
#define NRF24_REG_RX_ADDR_P0 0x0A
#define NRF24_REG_RX_ADDR_P1 0x0B
#define NRF24_REG_RX_ADDR_P2 0x0C
#define NRF24_REG_RX_ADDR_P3 0x0D
#define NRF24_REG_RX_ADDR_P4 0x0E
#define NRF24_REG_RX_ADDR_P5 0x0F
#define NRF24_REG_TX_ADDR 0x10
#define NRF24_REG_RX_PW_P0 0x11
#define NRF24_REG_RX_PW_P1 0x12
#define NRF24_REG_RX_PW_P2 0x13
#define NRF24_REG_RX_PW_P3 0x14
#define NRF24_REG_RX_PW_P4 0x15
#define NRF24_REG_RX_PW_P5 0x16
#define NRF24_REG_FIFO_STATUS 0x17
#define NRF24_REG_DYNPD 0x1C
#define NRF24_REG_FEATURE 0x1D
// NRF24_REG_CONFIG MSB LSB DESCRIPTION
#define NRF24_MASK_RX_DR_IRQ_OFF 0b01000000 // 6 6 RX_DR will not be reflected on IRQ pin
#define NRF24_MASK_RX_DR_IRQ_ON 0b00000000 // 6 6 RX_DR will be reflected on IRQ pin as active low (default)
#define NRF24_MASK_TX_DS_IRQ_OFF 0b00100000 // 5 5 TX_DS will not be reflected on IRQ pin
#define NRF24_MASK_TX_DS_IRQ_ON 0b00000000 // 5 5 TX_DS will be reflected on IRQ pin as active low (default)
#define NRF24_MASK_MAX_RT_IRQ_OFF 0b00010000 // 4 4 MAX_RT will not be reflected on IRQ pin
#define NRF24_MASK_MAX_RT_IRQ_ON 0b00000000 // 4 4 MAX_RT will be reflected on IRQ pin as active low (default)
#define NRF24_CRC_OFF 0b00000000 // 3 3 CRC calculation: disabled
#define NRF24_CRC_ON 0b00001000 // 3 3 enabled (default)
#define NRF24_CRC_8 0b00000000 // 2 2 CRC scheme: CRC8 (default)
#define NRF24_CRC_16 0b00000100 // 2 2 CRC16
#define NRF24_POWER_UP 0b00000010 // 1 1 power up
#define NRF24_POWER_DOWN 0b00000000 // 1 1 power down
#define NRF24_PTX 0b00000000 // 0 0 enable primary Tx
#define NRF24_PRX 0b00000001 // 0 0 enable primary Rx
// NRF24_REG_EN_AA
#define NRF24_AA_P5_OFF 0b00000000 // 5 5 auto-ACK on pipe 5: disabled
#define NRF24_AA_P5_ON 0b00100000 // 5 5 enabled (default)
#define NRF24_AA_P4_OFF 0b00000000 // 4 4 auto-ACK on pipe 4: disabled
#define NRF24_AA_P4_ON 0b00010000 // 4 4 enabled (default)
#define NRF24_AA_P3_OFF 0b00000000 // 3 3 auto-ACK on pipe 3: disabled
#define NRF24_AA_P3_ON 0b00001000 // 3 3 enabled (default)
#define NRF24_AA_P2_OFF 0b00000000 // 2 2 auto-ACK on pipe 2: disabled
#define NRF24_AA_P2_ON 0b00000100 // 2 2 enabled (default)
#define NRF24_AA_P1_OFF 0b00000000 // 1 1 auto-ACK on pipe 1: disabled
#define NRF24_AA_P1_ON 0b00000010 // 1 1 enabled (default)
#define NRF24_AA_P0_OFF 0b00000000 // 0 0 auto-ACK on pipe 0: disabled
#define NRF24_AA_P0_ON 0b00000001 // 0 0 enabled (default)
// NRF24_REG_EN_RXADDR
#define NRF24_P5_OFF 0b00000000 // 5 5 receive pipe 5: disabled (default)
#define NRF24_P5_ON 0b00100000 // 5 5 enabled
#define NRF24_P4_OFF 0b00000000 // 4 4 receive pipe 4: disabled (default)
#define NRF24_P4_ON 0b00010000 // 4 4 enabled
#define NRF24_P3_OFF 0b00000000 // 3 3 receive pipe 3: disabled (default)
#define NRF24_P3_ON 0b00001000 // 3 3 enabled
#define NRF24_P2_OFF 0b00000000 // 2 2 receive pipe 2: disabled (default)
#define NRF24_P2_ON 0b00000100 // 2 2 enabled
#define NRF24_P1_OFF 0b00000000 // 1 1 receive pipe 1: disabled
#define NRF24_P1_ON 0b00000010 // 1 1 enabled (default)
#define NRF24_P0_OFF 0b00000000 // 0 0 receive pipe 0: disabled
#define NRF24_P0_ON 0b00000001 // 0 0 enabled (default)
// NRF24_REG_SETUP_AW
#define NRF24_ADDRESS_3_BYTES 0b00000001 // 1 0 address width: 3 bytes
#define NRF24_ADDRESS_4_BYTES 0b00000010 // 1 0 4 bytes
#define NRF24_ADDRESS_5_BYTES 0b00000011 // 1 0 5 bytes (default)
// NRF24_REG_SETUP_RETR
#define NRF24_ARD 0b00000000 // 7 4 auto retransmit delay: t[us] = (NRF24_ARD + 1) * 250 us
#define NRF24_ARC_OFF 0b00000000 // 3 0 auto retransmit count: auto retransmit disabled
#define NRF24_ARC 0b00000011 // 3 0 up to 3 retransmits on AA fail (default)
// NRF24_REG_RF_CH
#define NRF24_RF_CH 0b00000010 // 6 0 RF channel: f_CH[MHz] = 2400 MHz + NRF24_RF_CH
// NRF24_REG_RF_SETUP
#define NRF24_CONT_WAVE_OFF 0b00000000 // 7 7 continuous carrier transmit: disabled (default)
#define NRF24_CONT_WAVE_ON 0b10000000 // 7 7 enabled
#define NRF24_DR_250_KBPS 0b00100000 // 5 5 data rate: 250 kbps
#define NRF24_DR_1_MBPS 0b00000000 // 3 3 1 Mbps (default)
#define NRF24_DR_2_MBPS 0b00001000 // 3 3 2 Mbps
#define NRF24_RF_PWR_18_DBM 0b00000000 // 2 1 output power: -18 dBm
#define NRF24_RF_PWR_12_DBM 0b00000010 // 2 1 -12 dBm
#define NRF24_RF_PWR_6_DBM 0b00000100 // 2 1 -6 dBm
#define NRF24_RF_PWR_0_DBM 0b00000110 // 2 1 0 dBm (default)
// NRF24_REG_STATUS
#define NRF24_RX_DR 0b01000000 // 6 6 Rx data ready
#define NRF24_TX_DS 0b00100000 // 5 5 Tx data sent
#define NRF24_MAX_RT 0b00010000 // 4 4 maximum number of rentransmits reached (must be cleared to continue)
#define NRF24_RX_FIFO_EMPTY 0b00001110 // 3 1 Rx FIFO is empty
#define NRF24_RX_P_NO 0b00000000 // 3 1 number of data pipe that received data
#define NRF24_TX_FIFO_FULL 0b00000001 // 0 0 Tx FIFO is full
// NRF24_REG_OBSERVE_TX
#define NRF24_PLOS_CNT 0b00000000 // 7 4 number of lost packets
#define NRF24_ARC_CNT 0b00000000 // 3 0 number of retransmitted packets
// NRF24_REG_RPD
#define NRF24_RP_BELOW_64_DBM 0b00000000 // 0 0 received power in the current channel: less than -64 dBm
#define NRF24_RP_ABOVE_64_DBM 0b00000001 // 0 0 more than -64 dBm
// NRF24_REG_FIFO_STATUS
#define NRF24_TX_REUSE 0b01000000 // 6 6 reusing last transmitted payload
#define NRF24_TX_FIFO_FULL_FLAG 0b00100000 // 5 5 Tx FIFO is full
#define NRF24_TX_FIFO_EMPTY_FLAG 0b00010000 // 4 4 Tx FIFO is empty
#define NRF24_RX_FIFO_FULL_FLAG 0b00000010 // 5 5 Rx FIFO is full
#define NRF24_RX_FIFO_EMPTY_FLAG 0b00000001 // 4 4 Rx FIFO is empty
// NRF24_REG_DYNPD
#define NRF24_DPL_P5_OFF 0b00000000 // 5 5 dynamic payload length on pipe 5: disabled (default)
#define NRF24_DPL_P5_ON 0b00100000 // 5 5 enabled
#define NRF24_DPL_P4_OFF 0b00000000 // 4 4 dynamic payload length on pipe 4: disabled (default)
#define NRF24_DPL_P4_ON 0b00010000 // 4 4 enabled
#define NRF24_DPL_P3_OFF 0b00000000 // 3 3 dynamic payload length on pipe 3: disabled (default)
#define NRF24_DPL_P3_ON 0b00001000 // 3 3 enabled
#define NRF24_DPL_P2_OFF 0b00000000 // 2 2 dynamic payload length on pipe 2: disabled (default)
#define NRF24_DPL_P2_ON 0b00000100 // 2 2 enabled
#define NRF24_DPL_P1_OFF 0b00000000 // 1 1 dynamic payload length on pipe 1: disabled (default)
#define NRF24_DPL_P1_ON 0b00000010 // 1 1 enabled
#define NRF24_DPL_P0_OFF 0b00000000 // 0 0 dynamic payload length on pipe 0: disabled (default)
#define NRF24_DPL_P0_ON 0b00000001 // 0 0 enabled
// NRF24_REG_FEATURE
#define NRF24_DPL_OFF 0b00000000 // 2 2 dynamic payload length: disabled (default)
#define NRF24_DPL_ON 0b00000100 // 2 2 enabled
#define NRF24_ACK_PAY_OFF 0b00000000 // 1 1 payload with ACK packets: disabled (default)
#define NRF24_ACK_PAY_ON 0b00000010 // 1 1 enabled
#define NRF24_DYN_ACK_OFF 0b00000000 // 0 0 payloads without ACK packets: disabled (default)
#define NRF24_DYN_ACK_ON 0b00000001 // 0 0 enabled
class nRF24 {
public:
// constructor
nRF24(Module* module);
// basic methods
int16_t begin(int16_t freq = 2400, int16_t dataRate = 1000, uint8_t addrWidth = 5);
int16_t sleep();
int16_t standby();
int16_t transmit(String& str, uint8_t* addr);
int16_t transmit(const char* str, uint8_t* addr);
int16_t transmit(uint8_t* data, size_t len, uint8_t* addr);
// configuration methods
int16_t setFrequency(int16_t freq);
int16_t setDataRate(int16_t dataRate);
int16_t setAddressWidth(uint8_t addrWidth);
int16_t setReceivePipe(uint8_t pipeNum, uint8_t* addr);
int16_t setReceivePipe(uint8_t pipeNum, uint8_t addrByte);
int16_t disablePipe(uint8_t pipeNum);
private:
Module* _mod;
uint8_t _addrWidth;
void SPIreadRxPayload(uint8_t numBytes, uint8_t* inBytes);
void SPIwriteTxPayload(uint8_t* data, uint8_t numBytes);
void clearIRQ();
};
#endif