[HAL] Cleaned up example and added comments

This commit is contained in:
jgromes 2023-04-22 18:07:47 +02:00
parent 7e47910430
commit d5fe5e3e2d

View file

@ -1,70 +1,123 @@
/*
RadioLib Non-Arduino Raspberry Pi Example
This example shows how to use RadioLib without Arduino.
In this case, a CC1101 module is connected to Raspberry Pi
using the pigpio library.
Can be used as a starting point to port RadioLib to any platform!
See this API reference page for details on the RadioLib hardware abstraction
https://jgromes.github.io/RadioLib/class_hal.html
For full API reference, see the GitHub Pages
https://jgromes.github.io/RadioLib/
*/
// include the library
#include "RadioLib.h" #include "RadioLib.h"
// include the library for Raspberry GPIO pins
#include "pigpio.h" #include "pigpio.h"
class PiHal : public Hal { // create a new Raspberry Pi hardware abstraction layer
// using the pigpio library
// the HAL must inherit from the base RadioLibHal class
// and implement all of its virtual methods
class PiHal : public RadioLibHal {
public: public:
// default constructor - initializes the base HAL and any needed private members
PiHal(uint8_t spiChannel = 0, uint32_t spiSpeed = 2000000) PiHal(uint8_t spiChannel = 0, uint32_t spiSpeed = 2000000)
: Hal(PI_INPUT, PI_OUTPUT, PI_LOW, PI_HIGH, RISING_EDGE, FALLING_EDGE), : RadioLibHal(PI_INPUT, PI_OUTPUT, PI_LOW, PI_HIGH, RISING_EDGE, FALLING_EDGE),
_spiChannel(spiChannel), _spiChannel(spiChannel),
_spiSpeed(spiSpeed) {} _spiSpeed(spiSpeed) {
}
void init() override { void init() override {
// first initialise pigpio library
gpioInitialise(); gpioInitialise();
// now the SPI
spiBegin(); spiBegin();
} }
void term() override { void term() override {
// stop the SPI
spiEnd(); spiEnd();
// and now the pigpio library
gpioTerminate(); gpioTerminate();
} }
// GPIO-related methods (pinMode, digitalWrite etc.) should check
// RADIOLIB_NC as an alias for non-connected pins
void pinMode(uint32_t pin, uint32_t mode) override { void pinMode(uint32_t pin, uint32_t mode) override {
if (pin == RADIOLIB_NC) return; if(pin == RADIOLIB_NC) {
return;
}
gpioSetMode(pin, mode); gpioSetMode(pin, mode);
} }
void digitalWrite(uint32_t pin, uint32_t value) override { void digitalWrite(uint32_t pin, uint32_t value) override {
if (pin == RADIOLIB_NC) return; if(pin == RADIOLIB_NC) {
return;
}
gpioWrite(pin, value); gpioWrite(pin, value);
} }
uint32_t digitalRead(uint32_t pin) override { uint32_t digitalRead(uint32_t pin) override {
if (pin == RADIOLIB_NC) return 0; if(pin == RADIOLIB_NC) {
return gpioRead(pin); return(0);
}
return(gpioRead(pin));
} }
void attachInterrupt(uint32_t interruptNum, void (*interruptCb)(void), void attachInterrupt(uint32_t interruptNum, void (*interruptCb)(void), uint32_t mode) override {
uint32_t mode) override { if(interruptNum == RADIOLIB_NC) {
if (interruptNum == RADIOLIB_NC) return; return;
}
gpioSetISRFunc(interruptNum, mode, 0, (gpioISRFunc_t)interruptCb); gpioSetISRFunc(interruptNum, mode, 0, (gpioISRFunc_t)interruptCb);
} }
void detachInterrupt(uint32_t interruptNum) override { void detachInterrupt(uint32_t interruptNum) override {
if (interruptNum == RADIOLIB_NC) return; if(interruptNum == RADIOLIB_NC) {
return;
}
gpioSetISRFunc(interruptNum, NULL, NULL, nullptr); gpioSetISRFunc(interruptNum, NULL, NULL, nullptr);
} }
void delay(unsigned long ms) override { gpioDelay(ms * 1000); } void delay(unsigned long ms) override {
gpioDelay(ms * 1000);
}
void delayMicroseconds(unsigned long us) override { gpioDelay(us); } void delayMicroseconds(unsigned long us) override {
gpioDelay(us);
}
unsigned long millis() override { return gpioTick() / 1000; } unsigned long millis() override {
return(gpioTick() / 1000);
}
unsigned long micros() override { return gpioTick(); } unsigned long micros() override {
return(gpioTick());
}
long pulseIn(uint32_t pin, uint32_t state, unsigned long timeout) override { long pulseIn(uint32_t pin, uint32_t state, unsigned long timeout) override {
if (pin == RADIOLIB_NC) return 0; if(pin == RADIOLIB_NC) {
return(0);
}
gpioSetMode(pin, PI_INPUT); gpioSetMode(pin, PI_INPUT);
uint32_t start = gpioTick(); uint32_t start = gpioTick();
uint32_t curtick = gpioTick(); uint32_t curtick = gpioTick();
while (gpioRead(pin) == state) while(gpioRead(pin) == state) {
if ((gpioTick() - curtick) > timeout) return 0; if((gpioTick() - curtick) > timeout) {
while (gpioRead(pin) != state) return(0);
if ((gpioTick() - curtick) > timeout) return 0; }
while (gpioRead(pin) == state) }
if ((gpioTick() - curtick) > timeout) return 0;
return gpioTick() - start; return(gpioTick() - start);
} }
void spiBegin() { void spiBegin() {
@ -78,7 +131,7 @@ class PiHal : public Hal {
uint8_t spiTransfer(uint8_t b) { uint8_t spiTransfer(uint8_t b) {
char ret; char ret;
spiXfer(_spiHandle, (char*)&b, &ret, 1); spiXfer(_spiHandle, (char*)&b, &ret, 1);
return ret; return(ret);
} }
void spiEndTransaction() {} void spiEndTransaction() {}
@ -91,20 +144,52 @@ class PiHal : public Hal {
} }
private: private:
// the HAL can contain any additional private members
const unsigned int _spiSpeed; const unsigned int _spiSpeed;
const uint8_t _spiChannel; const uint8_t _spiChannel;
int _spiHandle = -1; int _spiHandle = -1;
}; };
// now we can create the radio module
// the first argument is a new isntance of the HAL class defined above
// the others are pin numbers
CC1101 radio = new Module(new PiHal(), 8, 24, RADIOLIB_NC, 25); CC1101 radio = new Module(new PiHal(), 8, 24, RADIOLIB_NC, 25);
// forward declaration of ISR function
void onPacket();
// the entry point for the program
int main(int argc, char** argv) {
// initialize just like with Arduino
printf("[CC1101] Initializing ... ");
int state = radio.begin();
if (state != RADIOLIB_ERR_NONE) {
printf("failed, code %d", state );
return(1);
}
// set the function that will be called
// when new packet is received
// RISING_EDGE is from the pigpio library
radio.setGdo0Action(onPacket, RISING_EDGE);
// start listening for packets
printf(F("[CC1101] Starting to listen ... "));
state = radio.startReceive();
if(state != RADIOLIB_ERR_NONE) {
printf("failed, code %d", state);
return(1);
}
}
void onPacket() { void onPacket() {
uint8_t* byteArr = new uint8_t[128]; // packet received, read the data
uint8_t byteArr[128];
int state = radio.readData(byteArr, sizeof(byteArr)); int state = radio.readData(byteArr, sizeof(byteArr));
if (state == RADIOLIB_ERR_NONE) { if (state == RADIOLIB_ERR_NONE) {
// packet was successfully received // packet was successfully received
printf("success!\n"); printf("[CC1101] Received packet!");
// print the data of the packet // print the data of the packet
printf("[CC1101] Data:\t\t"); printf("[CC1101] Data:\t\t");
@ -120,29 +205,16 @@ void onPacket() {
// print LQI (Link Quality Indicator) // print LQI (Link Quality Indicator)
// of the last received packet, lower is better // of the last received packet, lower is better
printf("[CC1101] LQI:\t\t%d\n", radio.getLQI()); printf("[CC1101] LQI:\t\t%d\n", radio.getLQI());
} else if (state == RADIOLIB_ERR_RX_TIMEOUT) {
printf("timeout!\n");
} else if (state == RADIOLIB_ERR_CRC_MISMATCH) { } else if (state == RADIOLIB_ERR_CRC_MISMATCH) {
printf("CRC error!\n"); // packet was received, but is malformed
printf("[CC1101] CRC error!\n");
} else { } else {
printf("failed, code %d\n", state); // some other error occurred
printf("[CC1101] Failed, code %d\n", state);
} }
// put module back to listen mode
radio.startReceive(); radio.startReceive();
} }
int main(int argc, char** argv) {
int state = radio.begin();
if (state != RADIOLIB_ERR_NONE) {
printf("init failed, code %d", state);
return 1;
}
radio.setGdo0Action(onPacket, RISING_EDGE);
state = radio.startReceive();
if (state != RADIOLIB_ERR_NONE) {
printf("start receive failed, code %d", state);
return 1;
}
}