220 lines
5.5 KiB
C++
220 lines
5.5 KiB
C++
/*
|
|
RadioLib Non-Arduino Raspberry Pi Example
|
|
|
|
This example shows how to use RadioLib without Arduino.
|
|
In this case, a CC1101 module is connected to Raspberry Pi
|
|
using the pigpio library.
|
|
|
|
Can be used as a starting point to port RadioLib to any platform!
|
|
See this API reference page for details on the RadioLib hardware abstraction
|
|
https://jgromes.github.io/RadioLib/class_hal.html
|
|
|
|
For full API reference, see the GitHub Pages
|
|
https://jgromes.github.io/RadioLib/
|
|
*/
|
|
|
|
// include the library
|
|
#include "RadioLib.h"
|
|
|
|
// include the library for Raspberry GPIO pins
|
|
#include "pigpio.h"
|
|
|
|
// create a new Raspberry Pi hardware abstraction layer
|
|
// using the pigpio library
|
|
// the HAL must inherit from the base RadioLibHal class
|
|
// and implement all of its virtual methods
|
|
class PiHal : public RadioLibHal {
|
|
public:
|
|
// default constructor - initializes the base HAL and any needed private members
|
|
PiHal(uint8_t spiChannel = 0, uint32_t spiSpeed = 2000000)
|
|
: RadioLibHal(PI_INPUT, PI_OUTPUT, PI_LOW, PI_HIGH, RISING_EDGE, FALLING_EDGE),
|
|
_spiChannel(spiChannel),
|
|
_spiSpeed(spiSpeed) {
|
|
|
|
}
|
|
|
|
void init() override {
|
|
// first initialise pigpio library
|
|
gpioInitialise();
|
|
|
|
// now the SPI
|
|
spiBegin();
|
|
}
|
|
|
|
void term() override {
|
|
// stop the SPI
|
|
spiEnd();
|
|
|
|
// and now the pigpio library
|
|
gpioTerminate();
|
|
}
|
|
|
|
// GPIO-related methods (pinMode, digitalWrite etc.) should check
|
|
// RADIOLIB_NC as an alias for non-connected pins
|
|
void pinMode(uint32_t pin, uint32_t mode) override {
|
|
if(pin == RADIOLIB_NC) {
|
|
return;
|
|
}
|
|
gpioSetMode(pin, mode);
|
|
}
|
|
|
|
void digitalWrite(uint32_t pin, uint32_t value) override {
|
|
if(pin == RADIOLIB_NC) {
|
|
return;
|
|
}
|
|
gpioWrite(pin, value);
|
|
}
|
|
|
|
uint32_t digitalRead(uint32_t pin) override {
|
|
if(pin == RADIOLIB_NC) {
|
|
return(0);
|
|
}
|
|
return(gpioRead(pin));
|
|
}
|
|
|
|
void attachInterrupt(uint32_t interruptNum, void (*interruptCb)(void), uint32_t mode) override {
|
|
if(interruptNum == RADIOLIB_NC) {
|
|
return;
|
|
}
|
|
gpioSetISRFunc(interruptNum, mode, 0, (gpioISRFunc_t)interruptCb);
|
|
}
|
|
|
|
void detachInterrupt(uint32_t interruptNum) override {
|
|
if(interruptNum == RADIOLIB_NC) {
|
|
return;
|
|
}
|
|
gpioSetISRFunc(interruptNum, NULL, NULL, nullptr);
|
|
}
|
|
|
|
void delay(unsigned long ms) override {
|
|
gpioDelay(ms * 1000);
|
|
}
|
|
|
|
void delayMicroseconds(unsigned long us) override {
|
|
gpioDelay(us);
|
|
}
|
|
|
|
unsigned long millis() override {
|
|
return(gpioTick() / 1000);
|
|
}
|
|
|
|
unsigned long micros() override {
|
|
return(gpioTick());
|
|
}
|
|
|
|
long pulseIn(uint32_t pin, uint32_t state, unsigned long timeout) override {
|
|
if(pin == RADIOLIB_NC) {
|
|
return(0);
|
|
}
|
|
|
|
gpioSetMode(pin, PI_INPUT);
|
|
uint32_t start = gpioTick();
|
|
uint32_t curtick = gpioTick();
|
|
|
|
while(gpioRead(pin) == state) {
|
|
if((gpioTick() - curtick) > timeout) {
|
|
return(0);
|
|
}
|
|
}
|
|
|
|
return(gpioTick() - start);
|
|
}
|
|
|
|
void spiBegin() {
|
|
if(_spiHandle < 0) {
|
|
_spiHandle = spiOpen(_spiChannel, _spiSpeed, 0);
|
|
}
|
|
}
|
|
|
|
void spiBeginTransaction() {}
|
|
|
|
uint8_t spiTransfer(uint8_t b) {
|
|
char ret;
|
|
spiXfer(_spiHandle, (char*)&b, &ret, 1);
|
|
return(ret);
|
|
}
|
|
|
|
void spiEndTransaction() {}
|
|
|
|
void spiEnd() {
|
|
if (_spiHandle >= 0) {
|
|
spiClose(_spiHandle);
|
|
_spiHandle = -1;
|
|
}
|
|
}
|
|
|
|
private:
|
|
// the HAL can contain any additional private members
|
|
const unsigned int _spiSpeed;
|
|
const uint8_t _spiChannel;
|
|
int _spiHandle = -1;
|
|
};
|
|
|
|
// now we can create the radio module
|
|
// the first argument is a new isntance of the HAL class defined above
|
|
// the others are pin numbers
|
|
CC1101 radio = new Module(new PiHal(), 8, 24, RADIOLIB_NC, 25);
|
|
|
|
// forward declaration of ISR function
|
|
void onPacket();
|
|
|
|
// the entry point for the program
|
|
int main(int argc, char** argv) {
|
|
// initialize just like with Arduino
|
|
printf("[CC1101] Initializing ... ");
|
|
int state = radio.begin();
|
|
if (state != RADIOLIB_ERR_NONE) {
|
|
printf("failed, code %d", state );
|
|
return(1);
|
|
}
|
|
|
|
// set the function that will be called
|
|
// when new packet is received
|
|
// RISING_EDGE is from the pigpio library
|
|
radio.setGdo0Action(onPacket, RISING_EDGE);
|
|
|
|
// start listening for packets
|
|
printf(F("[CC1101] Starting to listen ... "));
|
|
state = radio.startReceive();
|
|
if(state != RADIOLIB_ERR_NONE) {
|
|
printf("failed, code %d", state);
|
|
return(1);
|
|
}
|
|
}
|
|
|
|
void onPacket() {
|
|
// packet received, read the data
|
|
uint8_t byteArr[128];
|
|
int state = radio.readData(byteArr, sizeof(byteArr));
|
|
|
|
if (state == RADIOLIB_ERR_NONE) {
|
|
// packet was successfully received
|
|
printf("[CC1101] Received packet!");
|
|
|
|
// print the data of the packet
|
|
printf("[CC1101] Data:\t\t");
|
|
for (int b = 0; b < sizeof(byteArr); b++){
|
|
printf("%X", byteArr[b]);
|
|
}
|
|
printf("\n");
|
|
|
|
// print RSSI (Received Signal Strength Indicator)
|
|
// of the last received packet
|
|
printf("[CC1101] RSSI:\t\t%d dBm\n", radio.getRSSI());
|
|
|
|
// print LQI (Link Quality Indicator)
|
|
// of the last received packet, lower is better
|
|
printf("[CC1101] LQI:\t\t%d\n", radio.getLQI());
|
|
|
|
} else if (state == RADIOLIB_ERR_CRC_MISMATCH) {
|
|
// packet was received, but is malformed
|
|
printf("[CC1101] CRC error!\n");
|
|
|
|
} else {
|
|
// some other error occurred
|
|
printf("[CC1101] Failed, code %d\n", state);
|
|
}
|
|
|
|
// put module back to listen mode
|
|
radio.startReceive();
|
|
}
|