

# rakon

#### SMD Temperature Compensated Crystal Oscillator

High performance TCXO offering excellent Phase Noise, Frequency Stability and VCO tilt compensation.

#### Product description

The RTX5032A employs an analogue IC for the oscillator and temperature compensation. 5.0 mm x 3.2 mm in size.

#### Applications

- Communications
- Basestation
- DSL/ADSL
- Femtocell
- Handset
- IP timing
- LTE
- Precision GPS
- SONET/SDH
- WiMAX/WiBro
- WLAN
- Other

#### Features

- Excellent phase noise performance
- Excellent temperature stability
- Frequency slope and perturbation specifications can be customized to the application requirement
- Clipped sinewave or CMOS output options

#### Specifications

- 1.0 SPECIFICATION REFERENCES
- Line Parameter Description
- 1.1Model descriptionRTX5032A (Preliminary)1.2RoHS compliantYes
- 1.3 Filter Enabled/Disabled
- 1.4 Reference number
- 1.5 Rakon part number

#### 2.0 FREQUENCY CHARACTERISTICS

| Line | Parameter                            | Test Condition                                                                                                             | Value     | Unit   |
|------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|--------|
| 2.1  | Frequency                            |                                                                                                                            | 5 to 52   | MHz    |
| 2.2  | Frequency calibration                | Offset from nominal frequency measured at $25^{\circ}C \pm 2^{\circ}C$                                                     | ±1 max    | ppm    |
| 2.3  | Reflow shift                         | Two consecutive reflows as per attached profile after 1 hour recovery at $25^{\circ}$ C                                    | ±1 max    | ppm    |
| 2.4  | Frequency stability over temperature | Referenced to the midpoint between minimum and maximum frequency value over the specified temperature range (Note 1, 2)    | ±0.1 to 3 | ppm    |
| 2.5  | Temperature range                    | The operating temperature range over which the frequency stability is measured                                             | -40 to 85 | °C     |
| 2.6  | Frequency slope                      | Minimum of 1 frequency reading every $2^{\circ}$ C, over the operating temperature range (Note 1, 2)                       | 0.1 max   | ppm/°C |
| 2.7  | Static temperature<br>hysteresis     | Frequency change after reciprocal temperature ramped over the operating range. Frequency measured before and after at 25°C | 0.4 max   | ppm    |
| 2.8  | Supply voltage<br>stability          | Supply voltage varied ±5% at 25°C                                                                                          | ±0.1 max  | ppm    |
| 2.9  | Load sensitivity                     | ±10% load change (Note 3)                                                                                                  | ±0.2 max  | ppm    |
| 2.10 | Long term stability                  | Frequency drift over 1 year at 25°C                                                                                        | ±1 max    | ppm    |
|      |                                      |                                                                                                                            |           |        |



| 3.0  | POWER SUPPLY                  |                                                                                      |            |      |
|------|-------------------------------|--------------------------------------------------------------------------------------|------------|------|
| Line | Parameter                     | Test Condition                                                                       | Value      | Unit |
| 3.1  | Supply voltage                | Nominal supply voltage range                                                         | 2.8 to 5.5 | V    |
| 3.2  | Current                       | At maximum supply voltage (Note 3)                                                   | 2.9 max    | mA   |
|      |                               |                                                                                      |            |      |
| 4.0  | CONTROL VOLTAGE (VC           | O) OPTION                                                                            |            |      |
| Line | Parameter                     | Test Condition                                                                       | Value      | Unit |
| 4.1  | Control voltage range         | The nominal control voltage value is midway between the minimum and maximum (Note 4) | 0.5 to 4.5 | V    |
| 4.2  | Frequency tuning              | Frequency shift from minimum to maximum control voltages                             | 6 to 30    | ppm  |
| 4.3  | Port input impedance          |                                                                                      | 100 min    | kΩ   |
| 4.4  | Frequency tuning<br>linearity | Deviation from straight line curve fit                                               | 10 max     | %    |
|      | ,                             |                                                                                      |            |      |
| 5.0  | OSCILLATOR OUTPUT - (         | CS OPTION                                                                            |            |      |
| Line | Parameter                     | Test Condition                                                                       | Value      | Unit |
| 5.1  | Output waveform               | DC coupled Clipped sine-wave output (Note 5)                                         |            |      |
| 5.2  | Output voltage level          | At minimum supply voltage (Note 3)                                                   | 0.8 min    | V    |
| 5.3  | Output load<br>resistance     | Operating range                                                                      | 9 to 11    | kΩ   |
| 5.4  | Output load<br>capacitance    | Operating range                                                                      | 9 to 11    | pF   |
| 5.5  | Start up time<br>(amplitude)  | Time taken for output to reach 90% of specified output level                         | 1 max      | ms   |
| 5.6  | Settling time<br>(frequency)  | Time taken for frequency to reach specified calibration tolerance (Note 6)           | 10 max     | ms   |
|      |                               |                                                                                      |            |      |
| 6.0  | OSCILLATOR OUTPUT - (         | CMOS OPTION                                                                          |            |      |
| Line | Parameter                     | Test Condition                                                                       | Value      | Unit |
| 6.1  | Output waveform               | HCMOS                                                                                |            |      |
| 6.2  | Output voltage level<br>low   | Measured with a capacitive load of 10pF                                              | 10 max     | %Vcc |
| 6.3  | Output voltage level<br>high  | Measured with a capacitive load of 10pF                                              | 90 min     | %Vcc |
| 6.4  | Rise and fall times           | Measured with a capacitive load of 10pF                                              | 5 max      | ns   |
| 6.5  | Duty cycle                    | Measured at 50% Vcc trigger level                                                    | 40 to 60   | %    |
| 6.6  | Output load                   |                                                                                      | 10 max     | pF   |
| 6.7  | Settling time<br>(frequency)  | Time taken for frequency to reach specified calibration tolerance (Note 6)           | 10 max     | ms   |
|      |                               |                                                                                      |            |      |

| 7.0  | SSB PHASE NOISE                                      |                                                                                                 |       |        |
|------|------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------|--------|
| Line | Parameter                                            | Test Condition                                                                                  | Value | Unit   |
| 7.1  | SSB phase noise<br>power density at 1Hz<br>offset    | Typical value for a 10.0MHz Oscillator with 10nF external filter capacitor at 25°C. CMOS output | -75   | dBc/Hz |
| 7.2  | SSB phase noise<br>power density at<br>10Hz offset   | Typical value for a 10.0MHz Oscillator with 10nF external filter capacitor at 25°C. CMOS output | -98   | dBc/Hz |
| 7.3  | SSB phase noise<br>power density at<br>100Hz offset  | Typical value for a 10.0MHz Oscillator with 10nF external filter capacitor at 25°C. CMOS output | -127  | dBc/Hz |
| 7.4  | SSB phase noise<br>power density at 1kHz<br>offset   | Typical value for a 10.0MHz Oscillator with 10nF external filter capacitor at 25°C. CMOS output | -147  | dBc/Hz |
| 7.5  | SSB phase noise<br>power density at<br>10kHz offset  | Typical value for a 10.0MHz Oscillator with 10nF external filter capacitor at 25°C. CMOS output | -152  | dBc/Hz |
| 7.6  | SSB phase noise<br>power density at<br>100kHz offset | Typical value for a 10.0MHz Oscillator with 10nF external filter capacitor at 25°C. CMOS output | -155  | dBc/Hz |
| 7.7  | SSB phase noise<br>power density at<br>1MHz offset   | Typical value for a 10.0MHz Oscillator with 10nF external filter capacitor at 25°C. CMOS output | -157  | dBc/Hz |

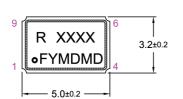
## 8.0 ENVIRONMENTAL

| Line | Parameter           | Description                                                                                                       |
|------|---------------------|-------------------------------------------------------------------------------------------------------------------|
| 8.1  | Shock               | Half sine wave acceleration of 100G peak amplitude for 6ms duration, 3 cycles each plane. IEC 60068-2-27.         |
| 8.2  | Humidity            | After 48 hours at $85^{\circ}C \pm 2^{\circ}C 85\%$ relative humidity non-condensing (Note 7).                    |
| 8.3  | Thermal shock       | Exposed at -40°C for 30 minutes them to $85^{\circ}$ C for 30 minutes constantly for a period of 5 days (Note 7). |
| 8.4  | Vibration           | 10G RMS from 30Hz to 1500Hz random in each of the 3 axis for 4 hours, total 12 hours (Note 7).                    |
| 8.5  | Storage temperature | -40 to 85°C.                                                                                                      |

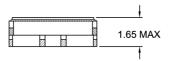
#### 9.0 MARKING

| Line | Parameter | Description          |
|------|-----------|----------------------|
| 9.1  | Туре      | Engraved.            |
| 9.2  | Line 1    | R and product code.  |
| 9.3  | Line 2    | Pin 1 and date code. |

## 10.0 MANUFACTURING INFORMATION


| Line | Parameter             | Description                                                     |
|------|-----------------------|-----------------------------------------------------------------|
| 10.1 | Reflow                | Solder reflow processes as per attached profile.                |
| 10.2 | Packaging description | Tape and reel. Standard packing quantity is 2000 units per reel |

## 11.0 SPECIFICATION NOTES


| Line | Parameter | Description                                                                                                                                                                             |
|------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11.1 | Note 1    | Temperature varied at maximum of 1°C per minute. Control voltage held at midpoint.                                                                                                      |
| 11.2 | Note 2    | Parts should be shielded from drafts causing unexpected thermal gradients. Temperature changes due to ambient air currents on the oscillator can lead to short term frequency drift.    |
| 11.3 | Note 3    | Specified for load stated in oscillator output section.                                                                                                                                 |
| 11.4 | Note 4    | VCO of 4.5V only applicable when Vcc of 5.0V is applied.                                                                                                                                |
| 11.5 | Note 5    | For AC coupling, an external capacitor (greater or equal 1nF) is required.                                                                                                              |
| 11.6 | Note 6    | Specification assumes that no phase noise filtering. If low phase noise is required, frequency settling time will be extended. Full details are available from your Rakon sales office. |
| 11.7 | Note 7    | The environmental condition will cause less than 1ppm shift in frequency measured at 25°C.                                                                                              |

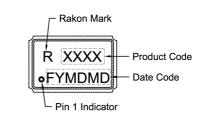
# Drawing Name: RTX5032A Model Drawing





FRONT VIEW




SIDE VIEW

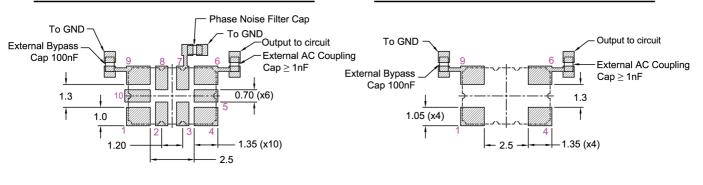


BOTTOM VIEW

RECOMMENDED PAD LAYOUT - FILTER ENABLED

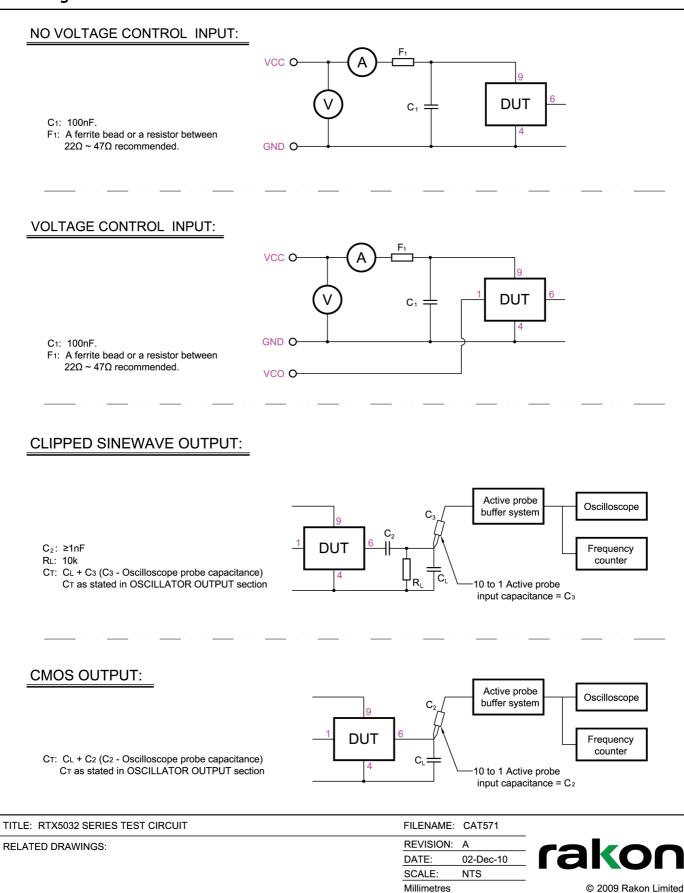
## MARKING EXAMPLE



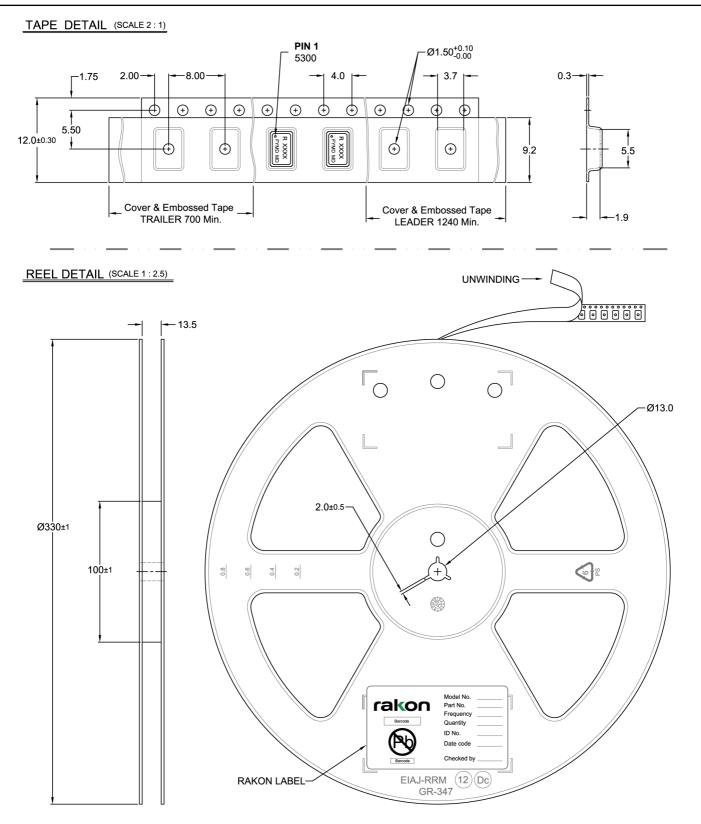



## END VIEW

## PIN CONNECTIONS

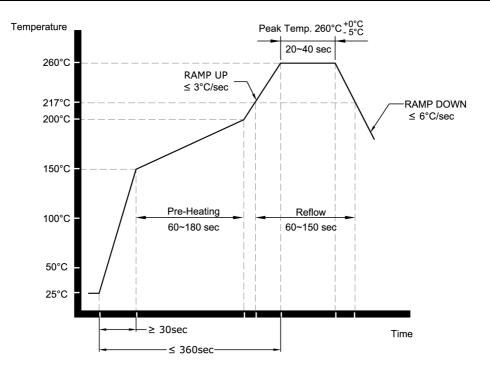

| Without VC     |                 | With VC        |                 |  |
|----------------|-----------------|----------------|-----------------|--|
| Filter Enabled | Filter Disabled | Filter Enabled | Filter Disabled |  |
| 1 NC           | 1 NC            | 1 VCO          | 1 VCO           |  |
| 2 NC           | 4 GND           | 2 NC           | 4 GND           |  |
| 3 NC           | 6 RF OUT        | 3 NC           | 6 RF OUT        |  |
| 4 GND          | 9 VCC           | 4 GND          | 9 VCC           |  |
| 5 NC           |                 | 5 NC           |                 |  |
| 6 RF OUT       |                 | 6 RF OUT       |                 |  |
| 7 VC FILTER    |                 | 7 VC FILTER    |                 |  |
| 8 NC           |                 | 8 NC           |                 |  |
| 9 VCC          |                 | 9 VCC          |                 |  |
| 10 NC          |                 | 10 NC          |                 |  |

## RECOMMENDED PAD LAYOUT - FILTER DISABLED




| TITLE: RTX5032A MODEL | FILENAME:        | CAT569    | TOLERANCES:        |                      |
|-----------------------|------------------|-----------|--------------------|----------------------|
| RELATED DRAWINGS:     | <b>REVISION:</b> | В         | XX =<br>X.X = ±0.2 |                      |
|                       | DATE:            | 22-Aug-11 | $X.XX = \pm 0.13$  | rakon                |
|                       | SCALE:           | 5:1       | X.XXX =<br>X° =    |                      |
|                       | Millimetres      |           | Hole =             | © 2009 Rakon Limited |

## Drawing Name: RTX5032 Series Test Circuit




# Drawing Name: I(V)T5300 Series Tape & Reel



| TITLE: 5032 SERIES TAPE REEL | FILENAME: CAT449 | TOLERANCES:            |                      |
|------------------------------|------------------|------------------------|----------------------|
| RELATED DRAWINGS:            | REVISION: F      | $- XX = X.X = \pm 0.1$ |                      |
|                              | DATE: 22-Aug-11  | $X.XX = \pm 0.05$      | akon                 |
|                              | SCALE: 2 : 1     | - X.XXX =              |                      |
|                              | Millimetres      | Hole =                 | © 2009 Rakon Limited |

# Drawing Name: Pb-Free Reflow



### NOTE:

The product has been tested to withstand the Reflow Profile shown. The Reflow Profile used to solder Rakon products is determined by the solder paste Manufacturer's specification. It is recommended that the Reflow Profile used does not exceed the one shown above.

| TITLE: Pb-FREE REFLOW | FILENAME: CAT541 |                      |
|-----------------------|------------------|----------------------|
| RELATED DRAWINGS:     | REVISION: B      |                      |
|                       | DATE: 05-Sep-11  | rakon                |
|                       | SCALE: NTS       |                      |
|                       | Millimetres      | © 2009 Rakon Limited |