RadioLibSmol/extras/test/unit/include/TestHal.hpp

269 lines
8.2 KiB
C++

#ifndef TEST_HAL_HPP
#define TEST_HAL_HPP
#include <chrono>
#include <thread>
#include <fmt/format.h>
#include <RadioLib.h>
#include <boost/log/trivial.hpp>
#include <boost/format.hpp>
#if defined(TEST_HAL_LOG)
#define HAL_LOG(...) BOOST_TEST_MESSAGE(__VA_ARGS__)
#else
#define HAL_LOG(...) {}
#endif
#include "HardwareEmulation.hpp"
#define TEST_HAL_INPUT (0)
#define TEST_HAL_OUTPUT (1)
#define TEST_HAL_LOW (0)
#define TEST_HAL_HIGH (1)
#define TEST_HAL_RISING (0)
#define TEST_HAL_FALLING (1)
// number of emulated GPIO pins
#define TEST_HAL_NUM_GPIO_PINS (32)
#define TEST_HAL_SPI_LOG_LENGTH (512)
class TestHal : public RadioLibHal {
public:
TestHal() : RadioLibHal(TEST_HAL_INPUT, TEST_HAL_OUTPUT, TEST_HAL_LOW, TEST_HAL_HIGH, TEST_HAL_RISING, TEST_HAL_FALLING) { }
void init() override {
HAL_LOG("TestHal::init()");
// save program start timestamp
start = std::chrono::high_resolution_clock::now();
// init emulated GPIO
for(int i = 0; i < TEST_HAL_NUM_GPIO_PINS; i++) {
this->gpio[i].mode = 0;
this->gpio[i].value = 0;
this->gpio[i].event = false;
this->gpio[i].func = PIN_UNASSIGNED;
}
// wipe history log
this->spiLogWipe();
}
void term() override {
HAL_LOG("TestHal::term()");
}
void pinMode(uint32_t pin, uint32_t mode) override {
HAL_LOG("TestHal::pinMode(pin=" << pin << ", mode=" << mode << " [" << ((mode == TEST_HAL_INPUT) ? "INPUT" : "OUTPUT") << "])");
// check the range
BOOST_ASSERT_MSG(pin < TEST_HAL_NUM_GPIO_PINS, "Pin number out of range");
// check known modes
BOOST_ASSERT_MSG(((mode == TEST_HAL_INPUT) || (mode == TEST_HAL_OUTPUT)), "Invalid pin mode");
// set mode
this->gpio[pin].mode = mode;
}
void digitalWrite(uint32_t pin, uint32_t value) override {
HAL_LOG("TestHal::digitalWrite(pin=" << pin << ", value=" << value << " [" << ((value == TEST_HAL_LOW) ? "LOW" : "HIGH") << "])");
// check the range
BOOST_ASSERT_MSG(pin < TEST_HAL_NUM_GPIO_PINS, "Pin number out of range");
// check it is output
BOOST_ASSERT_MSG(this->gpio[pin].mode == TEST_HAL_OUTPUT, "GPIO is not output!");
// check known values
BOOST_ASSERT_MSG(((value == TEST_HAL_LOW) || (value == TEST_HAL_HIGH)), "Invalid output value");
// set value
this->gpio[pin].value = value;
this->gpio[pin].event = true;
if(radio) {
this->radio->HandleGPIO();
}
this->gpio[pin].event = false;
}
uint32_t digitalRead(uint32_t pin) override {
HAL_LOG("TestHal::digitalRead(pin=" << pin << ")");
// check the range
BOOST_ASSERT_MSG(pin < TEST_HAL_NUM_GPIO_PINS, "Pin number out of range");
// check it is input
BOOST_ASSERT_MSG(this->gpio[pin].mode == TEST_HAL_INPUT, "GPIO is not input");
// read the value
uint32_t value = this->gpio[pin].value;
HAL_LOG("TestHal::digitalRead(pin=" << pin << ")=" << value << " [" << ((value == TEST_HAL_LOW) ? "LOW" : "HIGH") << "]");
return(value);
}
void attachInterrupt(uint32_t interruptNum, void (*interruptCb)(void), uint32_t mode) override {
HAL_LOG("TestHal::attachInterrupt(interruptNum=" << interruptNum << ", interruptCb=" << interruptCb << ", mode=" << mode << ")");
// TODO implement
(void)interruptNum;
(void)interruptCb;
(void)mode;
}
void detachInterrupt(uint32_t interruptNum) override {
HAL_LOG("TestHal::detachInterrupt(interruptNum=" << interruptNum << ")");
// TODO implement
(void)interruptNum;
}
void delay(unsigned long ms) override {
HAL_LOG("TestHal::delay(ms=" << ms << ")");
const auto start = std::chrono::high_resolution_clock::now();
// sleep_for is sufficient for ms-precision sleep
std::this_thread::sleep_for(std::chrono::duration<unsigned long, std::milli>(ms));
// measure and print
const auto end = std::chrono::high_resolution_clock::now();
const std::chrono::duration<double, std::milli> elapsed = end - start;
HAL_LOG("TestHal::delay(ms=" << ms << ")=" << elapsed.count() << "ms");
}
void delayMicroseconds(unsigned long us) override {
HAL_LOG("TestHal::delayMicroseconds(us=" << us << ")");
const auto start = std::chrono::high_resolution_clock::now();
// busy wait is needed for microseconds precision
const auto len = std::chrono::microseconds(us);
while(std::chrono::high_resolution_clock::now() - start < len);
// measure and print
const auto end = std::chrono::high_resolution_clock::now();
const std::chrono::duration<double, std::micro> elapsed = end - start;
HAL_LOG("TestHal::delayMicroseconds(us=" << us << ")=" << elapsed.count() << "us");
}
void yield() override {
HAL_LOG("TestHal::yield()");
}
unsigned long millis() override {
HAL_LOG("TestHal::millis()");
std::chrono::time_point now = std::chrono::high_resolution_clock::now();
auto res = std::chrono::duration_cast<std::chrono::milliseconds>(now - this->start);
HAL_LOG("TestHal::millis()=" << res.count());
return(res.count());
}
unsigned long micros() override {
HAL_LOG("TestHal::micros()");
std::chrono::time_point now = std::chrono::high_resolution_clock::now();
auto res = std::chrono::duration_cast<std::chrono::microseconds>(now - this->start);
HAL_LOG("TestHal::micros()=" << res.count());
return(res.count());
}
long pulseIn(uint32_t pin, uint32_t state, unsigned long timeout) override {
HAL_LOG("TestHal::pulseIn(pin=" << pin << ", state=" << state << ", timeout=" << timeout << ")");
// TODO implement
(void)pin;
(void)state;
(void)timeout;
return(0);
}
void spiBegin() {
HAL_LOG("TestHal::spiBegin()");
}
void spiBeginTransaction() {
HAL_LOG("TestHal::spiBeginTransaction()");
}
void spiTransfer(uint8_t* out, size_t len, uint8_t* in) {
HAL_LOG("TestHal::spiTransfer(len=" << len << ")");
for(size_t i = 0; i < len; i++) {
// append to log
(*this->spiLogPtr++) = out[i];
// process the SPI byte
in[i] = this->radio->HandleSPI(out[i]);
// artificial delay to emulate SPI running at a finite speed
// this is added because timeouts are based on time duration,
// so we need to make sure some time actually elapses
this->delayMicroseconds(100);
// output debug
HAL_LOG(fmt::format("out={:#02x}, in={:#02x}", out[i], in[i]));
}
}
void spiEndTransaction() {
HAL_LOG("TestHal::spiEndTransaction()");
}
void spiEnd() {
HAL_LOG("TestHal::spiEnd()");
}
void tone(uint32_t pin, unsigned int frequency, unsigned long duration = 0) {
HAL_LOG("TestHal::tone(pin=" << pin << ", frequency=" << frequency << ", duration=" << duration << ")");
// TODO implement
(void)pin;
(void)frequency;
(void)duration;
}
void noTone(uint32_t pin) {
HAL_LOG("TestHal::noTone(pin=" << pin << ")");
// TODO implement
(void)pin;
}
// method to compare buffer to the internal SPI log, for verifying SPI transactions
int spiLogMemcmp(const void* in, size_t n) {
int ret = memcmp(this->spiLog, in, n);
this->spiLogWipe();
return(ret);
}
void spiLogWipe() {
memset(this->spiLog, 0x00, TEST_HAL_SPI_LOG_LENGTH);
this->spiLogPtr = this->spiLog;
}
// method that "connects" the emualted radio hardware to this HAL
void connectRadio(EmulatedRadio* r) {
this->radio = r;
this->radio->connect(&this->gpio[EMULATED_RADIO_NSS_PIN],
&this->gpio[EMULATED_RADIO_IRQ_PIN],
&this->gpio[EMULATED_RADIO_RST_PIN],
&this->gpio[EMULATED_RADIO_GPIO_PIN]);
}
private:
// array of emulated GPIO pins
EmulatedPin_t gpio[TEST_HAL_NUM_GPIO_PINS];
// start time point
std::chrono::time_point<std::chrono::high_resolution_clock> start;
// emulated radio hardware
EmulatedRadio* radio;
// SPI history log
uint8_t spiLog[TEST_HAL_SPI_LOG_LENGTH];
uint8_t* spiLogPtr;
};
#endif