2325 lines
97 KiB
C++
2325 lines
97 KiB
C++
#include "LoRaWAN.h"
|
||
#include <string.h>
|
||
|
||
#if !RADIOLIB_EXCLUDE_LORAWAN
|
||
|
||
#if defined(RADIOLIB_EEPROM_UNSUPPORTED)
|
||
#warning "Persistent storage not supported!"
|
||
#endif
|
||
|
||
// flag to indicate whether there was some action during Rx mode (timeout or downlink)
|
||
static volatile bool downlinkAction = false;
|
||
|
||
// interrupt service routine to handle downlinks automatically
|
||
#if defined(ESP8266) || defined(ESP32)
|
||
IRAM_ATTR
|
||
#endif
|
||
static void LoRaWANNodeOnDownlinkAction(void) {
|
||
downlinkAction = true;
|
||
}
|
||
|
||
uint8_t getDownlinkDataRate(uint8_t uplink, uint8_t offset, uint8_t base, uint8_t min, uint8_t max) {
|
||
int8_t dr = uplink - offset + base;
|
||
if(dr < min) {
|
||
dr = min;
|
||
} else if (dr > max) {
|
||
dr = max;
|
||
}
|
||
return(dr);
|
||
}
|
||
|
||
LoRaWANNode::LoRaWANNode(PhysicalLayer* phy, const LoRaWANBand_t* band) {
|
||
this->phyLayer = phy;
|
||
this->band = band;
|
||
this->rx2 = this->band->rx2;
|
||
this->difsSlots = 2;
|
||
this->backoffMax = 6;
|
||
this->enableCSMA = false;
|
||
}
|
||
|
||
void LoRaWANNode::setCSMA(uint8_t backoffMax, uint8_t difsSlots, bool enableCSMA) {
|
||
this->backoffMax = backoffMax;
|
||
this->difsSlots = difsSlots;
|
||
this->enableCSMA = enableCSMA;
|
||
}
|
||
|
||
#if !defined(RADIOLIB_EEPROM_UNSUPPORTED)
|
||
void LoRaWANNode::wipe() {
|
||
Module* mod = this->phyLayer->getMod();
|
||
mod->hal->wipePersistentStorage();
|
||
}
|
||
|
||
int16_t LoRaWANNode::restore() {
|
||
// if already joined, ignore
|
||
if(this->isJoinedFlag) {
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
|
||
Module* mod = this->phyLayer->getMod();
|
||
|
||
uint8_t nvm_table_version = mod->hal->getPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_TABLE_VERSION_ID);
|
||
// if (RADIOLIB_PERSISTENT_PARAM_LORAWAN_TABLE_VERSION > nvm_table_version) {
|
||
// // set default values for variables that are new or something
|
||
// }
|
||
(void)nvm_table_version;
|
||
|
||
// check the magic value
|
||
if(mod->hal->getPersistentParameter<uint16_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_MAGIC_ID) != RADIOLIB_LORAWAN_MAGIC) {
|
||
#if RADIOLIB_DEBUG
|
||
RADIOLIB_DEBUG_PRINTLN("magic id not set (no saved session)");
|
||
RADIOLIB_DEBUG_PRINTLN("first 16 bytes of NVM:");
|
||
uint8_t nvmBuff[16];
|
||
mod->hal->readPersistentStorage(mod->hal->getPersistentAddr(0), nvmBuff, 16);
|
||
RADIOLIB_DEBUG_HEXDUMP(nvmBuff, 16);
|
||
#endif
|
||
// the magic value is not set, user will have to do perform the join procedure
|
||
return(RADIOLIB_ERR_NETWORK_NOT_JOINED);
|
||
}
|
||
|
||
// pull all authentication keys from persistent storage
|
||
this->devAddr = mod->hal->getPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_DEV_ADDR_ID);
|
||
mod->hal->readPersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_APP_S_KEY_ID), this->appSKey, RADIOLIB_AES128_BLOCK_SIZE);
|
||
mod->hal->readPersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_FNWK_SINT_KEY_ID), this->fNwkSIntKey, RADIOLIB_AES128_BLOCK_SIZE);
|
||
mod->hal->readPersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_SNWK_SINT_KEY_ID), this->sNwkSIntKey, RADIOLIB_AES128_BLOCK_SIZE);
|
||
mod->hal->readPersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_NWK_SENC_KEY_ID), this->nwkSEncKey, RADIOLIB_AES128_BLOCK_SIZE);
|
||
|
||
// get session parameters
|
||
this->rev = mod->hal->getPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_VERSION_ID);
|
||
RADIOLIB_DEBUG_PRINTLN("LoRaWAN session: v1.%d", this->rev);
|
||
this->devNonce = mod->hal->getPersistentParameter<uint16_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_DEV_NONCE_ID);
|
||
this->joinNonce = mod->hal->getPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_JOIN_NONCE_ID);
|
||
|
||
// get MAC state
|
||
uint8_t txDrRx2Dr = mod->hal->getPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_TXDR_RX2DR_ID);
|
||
this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK] = (txDrRx2Dr >> 4) & 0x0F;
|
||
|
||
this->txPwrCur = mod->hal->getPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_TXPWR_CUR_ID);
|
||
|
||
uint8_t rx1DrOffDel = mod->hal->getPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_RX1_DROFF_DEL_ID);
|
||
this->rx1DrOffset = (rx1DrOffDel >> 4) & 0x0F;
|
||
this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK] = this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK] + this->band->rx1DataRateBase + this->rx1DrOffset;
|
||
this->rxDelays[0] = ((rx1DrOffDel >> 0) & 0x0F) * 1000;
|
||
if(this->rxDelays[0] == 0) {
|
||
this->rxDelays[0] = RADIOLIB_LORAWAN_RECEIVE_DELAY_1_MS;
|
||
}
|
||
this->rxDelays[1] = this->rxDelays[0] + 1000;
|
||
|
||
uint8_t rx2FreqBuf[3];
|
||
mod->hal->readPersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_RX2FREQ_ID), rx2FreqBuf, 3);
|
||
uint32_t rx2Freq = LoRaWANNode::ntoh<uint32_t>(&rx2FreqBuf[0], 3);
|
||
this->rx2.drMax = (txDrRx2Dr >> 0) & 0x0F;
|
||
this->rx2.freq = (float)rx2Freq / 10000.0;
|
||
|
||
uint8_t adrLimDel = mod->hal->getPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_ADR_LIM_DEL_ID);
|
||
this->adrLimitExp = (adrLimDel >> 4) & 0x0F;
|
||
this->adrDelayExp = (adrLimDel >> 0) & 0x0F;
|
||
|
||
this->nbTrans = mod->hal->getPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_NBTRANS_ID);
|
||
|
||
this->aFcntDown = mod->hal->getPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_A_FCNT_DOWN_ID);
|
||
this->nFcntDown = mod->hal->getPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_N_FCNT_DOWN_ID);
|
||
this->confFcntUp = mod->hal->getPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_CONF_FCNT_UP_ID);
|
||
this->confFcntDown = mod->hal->getPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_CONF_FCNT_DOWN_ID);
|
||
this->adrFcnt = mod->hal->getPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_ADR_FCNT_ID);
|
||
|
||
// fcntUp is stored in highly efficient wear-leveling system, so parse it as required
|
||
this->restoreFcntUp();
|
||
|
||
uint8_t queueBuff[sizeof(LoRaWANMacCommandQueue_t)] = { 0 };
|
||
mod->hal->readPersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_FOPTS_ID), queueBuff, sizeof(LoRaWANMacCommandQueue_t));
|
||
memcpy(&this->commandsUp, queueBuff, sizeof(LoRaWANMacCommandQueue_t));
|
||
RADIOLIB_DEBUG_PRINTLN("Number of MAC commands: %d", this->commandsUp.numCommands);
|
||
|
||
int16_t state = this->restoreChannels();
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
state = this->setPhyProperties();
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
// full session is restored, so set joined flag
|
||
this->isJoinedFlag = true;
|
||
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
|
||
int16_t LoRaWANNode::restoreFcntUp() {
|
||
Module* mod = this->phyLayer->getMod();
|
||
|
||
uint8_t fcntBuffStart = mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_FCNT_UP_ID);
|
||
uint8_t fcntBuffEnd = mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_FCNT_UP_ID + 1);
|
||
uint8_t buffSize = fcntBuffEnd - fcntBuffStart;
|
||
#if RADIOLIB_STATIC_ONLY
|
||
uint8_t fcntBuff[RADIOLIB_STATIC_ARRAY_SIZE];
|
||
#else
|
||
uint8_t* fcntBuff = new uint8_t[buffSize];
|
||
#endif
|
||
mod->hal->readPersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_FCNT_UP_ID), fcntBuff, buffSize);
|
||
|
||
// copy the two most significant bytes from the first two bytes
|
||
uint32_t bits_30_22 = (uint32_t)fcntBuff[0];
|
||
uint32_t bits_22_14 = (uint32_t)fcntBuff[1];
|
||
|
||
// the next 7 bits must be retrieved from the byte to which was written most recently
|
||
// this is the last byte that has its state bit (most significant bit) set equal to its predecessor
|
||
// we find the first byte that has its state bit different, and subtract one
|
||
uint8_t idx = 2;
|
||
uint8_t state = fcntBuff[idx] >> 7;
|
||
for(; idx < 5; idx++) {
|
||
if(fcntBuff[idx] >> 7 != state) {
|
||
break;
|
||
}
|
||
}
|
||
uint32_t bits_14_7 = (uint32_t)fcntBuff[idx-1] & 0x7F;
|
||
|
||
// equally, the last 7 bits must be retrieved from the byte to which was written most recently
|
||
// this is the last byte that has its state bit (most significant bit) set equal to its predecessor
|
||
// we find the first byte that has its state bit different, and subtract one
|
||
idx = 5;
|
||
state = fcntBuff[idx] >> 7;
|
||
for(; idx < buffSize; idx++) {
|
||
if(fcntBuff[idx] >> 7 != state) {
|
||
break;
|
||
}
|
||
}
|
||
uint32_t bits_7_0 = (uint32_t)fcntBuff[idx-1] & 0x7F;
|
||
#if !RADIOLIB_STATIC_ONLY
|
||
delete[] fcntBuff;
|
||
#endif
|
||
|
||
this->fcntUp = (bits_30_22 << 22) | (bits_22_14 << 14) | (bits_14_7 << 7) | bits_7_0;
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
|
||
int16_t LoRaWANNode::restoreChannels() {
|
||
const uint8_t bytesPerChannel = 5;
|
||
const uint8_t numBytes = 2 * RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS * bytesPerChannel;
|
||
uint8_t buffer[numBytes] = { 0 };
|
||
Module* mod = this->phyLayer->getMod();
|
||
mod->hal->readPersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_FREQS_ID), buffer, numBytes);
|
||
for(uint8_t dir = 0; dir < 2; dir++) {
|
||
for(uint8_t i = 0; i < RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS; i++) {
|
||
uint8_t chBuff[bytesPerChannel] = { 0 };
|
||
memcpy(chBuff, &buffer[(dir * RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS * bytesPerChannel) + i * bytesPerChannel], bytesPerChannel);
|
||
this->availableChannels[dir][i].enabled = (chBuff[0] & 0x80) >> 7;
|
||
this->availableChannels[dir][i].idx = chBuff[0] & 0x7F;
|
||
uint32_t freq = LoRaWANNode::ntoh<uint32_t>(&chBuff[1], 3);
|
||
this->availableChannels[dir][i].freq = (float)freq/10000.0;
|
||
this->availableChannels[dir][i].drMax = (chBuff[4] & 0xF0) >> 4;
|
||
this->availableChannels[dir][i].drMin = (chBuff[4] & 0x0F) >> 0;
|
||
}
|
||
}
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
#endif
|
||
|
||
int16_t LoRaWANNode::beginOTAA(uint64_t joinEUI, uint64_t devEUI, uint8_t* nwkKey, uint8_t* appKey, uint8_t joinDr, bool force) {
|
||
// check if we actually need to send the join request
|
||
Module* mod = this->phyLayer->getMod();
|
||
|
||
#if !defined(RADIOLIB_EEPROM_UNSUPPORTED)
|
||
if(!force && (mod->hal->getPersistentParameter<uint16_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_MAGIC_ID) == RADIOLIB_LORAWAN_MAGIC)) {
|
||
// the device has joined already, we can just pull the data from persistent storage
|
||
RADIOLIB_DEBUG_PRINTLN("Found existing session; restoring...");
|
||
return(this->restore());
|
||
}
|
||
#else
|
||
(void)force;
|
||
#endif
|
||
|
||
// set the physical layer configuration
|
||
this->txPwrCur = this->band->powerMax;
|
||
int16_t state = this->setPhyProperties();
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
// setup uplink/downlink frequencies and datarates
|
||
state = this->selectChannelsJR(this->devNonce, joinDr);
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
// configure for uplink with default configuration
|
||
state = this->configureChannel(RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK);
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
// increment devNonce as we are sending another join-request
|
||
this->devNonce += 1;
|
||
|
||
// build the join-request message
|
||
uint8_t joinRequestMsg[RADIOLIB_LORAWAN_JOIN_REQUEST_LEN];
|
||
|
||
// set the packet fields
|
||
joinRequestMsg[0] = RADIOLIB_LORAWAN_MHDR_MTYPE_JOIN_REQUEST | RADIOLIB_LORAWAN_MHDR_MAJOR_R1;
|
||
LoRaWANNode::hton<uint64_t>(&joinRequestMsg[RADIOLIB_LORAWAN_JOIN_REQUEST_JOIN_EUI_POS], joinEUI);
|
||
LoRaWANNode::hton<uint64_t>(&joinRequestMsg[RADIOLIB_LORAWAN_JOIN_REQUEST_DEV_EUI_POS], devEUI);
|
||
LoRaWANNode::hton<uint16_t>(&joinRequestMsg[RADIOLIB_LORAWAN_JOIN_REQUEST_DEV_NONCE_POS], this->devNonce);
|
||
|
||
// add the authentication code
|
||
uint32_t mic = this->generateMIC(joinRequestMsg, RADIOLIB_LORAWAN_JOIN_REQUEST_LEN - sizeof(uint32_t), nwkKey);
|
||
LoRaWANNode::hton<uint32_t>(&joinRequestMsg[RADIOLIB_LORAWAN_JOIN_REQUEST_LEN - sizeof(uint32_t)], mic);
|
||
|
||
// send it
|
||
state = this->phyLayer->transmit(joinRequestMsg, RADIOLIB_LORAWAN_JOIN_REQUEST_LEN);
|
||
this->rxDelayStart = mod->hal->millis();
|
||
RADIOLIB_DEBUG_PRINTLN("Join-request sent <-- Rx Delay start");
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
// configure Rx delay for join-accept message - these are re-configured once a valid join-request is received
|
||
this->rxDelays[0] = RADIOLIB_LORAWAN_JOIN_ACCEPT_DELAY_1_MS;
|
||
this->rxDelays[1] = RADIOLIB_LORAWAN_JOIN_ACCEPT_DELAY_2_MS;
|
||
|
||
// handle Rx1 and Rx2 windows - returns RADIOLIB_ERR_NONE if a downlink is received
|
||
state = downlinkCommon();
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
// build the buffer for the reply data
|
||
uint8_t joinAcceptMsgEnc[RADIOLIB_LORAWAN_JOIN_ACCEPT_MAX_LEN];
|
||
|
||
// check received length
|
||
size_t lenRx = this->phyLayer->getPacketLength(true);
|
||
if((lenRx != RADIOLIB_LORAWAN_JOIN_ACCEPT_MAX_LEN) && (lenRx != RADIOLIB_LORAWAN_JOIN_ACCEPT_MAX_LEN - RADIOLIB_LORAWAN_JOIN_ACCEPT_CFLIST_LEN)) {
|
||
RADIOLIB_DEBUG_PRINTLN("joinAccept reply length mismatch, expected %luB got %luB", RADIOLIB_LORAWAN_JOIN_ACCEPT_MAX_LEN, lenRx);
|
||
return(RADIOLIB_ERR_DOWNLINK_MALFORMED);
|
||
}
|
||
|
||
// read the packet
|
||
state = this->phyLayer->readData(joinAcceptMsgEnc, lenRx);
|
||
// downlink frames are sent without CRC, which will raise error on SX127x
|
||
// we can ignore that error
|
||
if(state != RADIOLIB_ERR_LORA_HEADER_DAMAGED) {
|
||
RADIOLIB_ASSERT(state);
|
||
}
|
||
|
||
// check reply message type
|
||
if((joinAcceptMsgEnc[0] & RADIOLIB_LORAWAN_MHDR_MTYPE_MASK) != RADIOLIB_LORAWAN_MHDR_MTYPE_JOIN_ACCEPT) {
|
||
RADIOLIB_DEBUG_PRINTLN("joinAccept reply message type invalid, expected 0x%02x got 0x%02x", RADIOLIB_LORAWAN_MHDR_MTYPE_JOIN_ACCEPT, joinAcceptMsgEnc[0]);
|
||
return(RADIOLIB_ERR_DOWNLINK_MALFORMED);
|
||
}
|
||
|
||
// decrypt the join accept message
|
||
// this is done by encrypting again in ECB mode
|
||
// the first byte is the MAC header which is not encrypted
|
||
uint8_t joinAcceptMsg[RADIOLIB_LORAWAN_JOIN_ACCEPT_MAX_LEN];
|
||
joinAcceptMsg[0] = joinAcceptMsgEnc[0];
|
||
RadioLibAES128Instance.init(nwkKey);
|
||
RadioLibAES128Instance.encryptECB(&joinAcceptMsgEnc[1], RADIOLIB_LORAWAN_JOIN_ACCEPT_MAX_LEN - 1, &joinAcceptMsg[1]);
|
||
|
||
RADIOLIB_DEBUG_PRINTLN("joinAcceptMsg:");
|
||
RADIOLIB_DEBUG_HEXDUMP(joinAcceptMsg, lenRx);
|
||
|
||
// get current JoinNonce from downlink and previous JoinNonce from persistent storage
|
||
uint32_t joinNonceNew = LoRaWANNode::ntoh<uint32_t>(&joinAcceptMsg[RADIOLIB_LORAWAN_JOIN_ACCEPT_JOIN_NONCE_POS], 3);
|
||
|
||
RADIOLIB_DEBUG_PRINTLN("JoinNoncePrev: %d, JoinNonce: %d", this->joinNonce, joinNonceNew);
|
||
// JoinNonce received must be greater than the last JoinNonce heard, else error
|
||
if((this->joinNonce > 0) && (joinNonceNew <= this->joinNonce)) {
|
||
return(RADIOLIB_ERR_JOIN_NONCE_INVALID);
|
||
}
|
||
this->joinNonce = joinNonceNew;
|
||
|
||
// check LoRaWAN revision (the MIC verification depends on this)
|
||
uint8_t dlSettings = joinAcceptMsg[RADIOLIB_LORAWAN_JOIN_ACCEPT_DL_SETTINGS_POS];
|
||
this->rev = (dlSettings & RADIOLIB_LORAWAN_JOIN_ACCEPT_R_1_1) >> 7;
|
||
RADIOLIB_DEBUG_PRINTLN("LoRaWAN revision: 1.%d", this->rev);
|
||
this->rx1DrOffset = (dlSettings & 0x70) >> 4;
|
||
this->rx2.drMax = dlSettings & 0x0F;
|
||
|
||
// verify MIC
|
||
if(this->rev == 1) {
|
||
// 1.1 version, first we need to derive the join accept integrity key
|
||
uint8_t keyDerivationBuff[RADIOLIB_AES128_BLOCK_SIZE] = { 0 };
|
||
keyDerivationBuff[0] = RADIOLIB_LORAWAN_JOIN_ACCEPT_JS_INT_KEY;
|
||
LoRaWANNode::hton<uint64_t>(&keyDerivationBuff[1], devEUI);
|
||
RadioLibAES128Instance.init(nwkKey);
|
||
RadioLibAES128Instance.encryptECB(keyDerivationBuff, RADIOLIB_AES128_BLOCK_SIZE, this->jSIntKey);
|
||
|
||
// prepare the buffer for MIC calculation
|
||
uint8_t micBuff[3*RADIOLIB_AES128_BLOCK_SIZE] = { 0 };
|
||
micBuff[0] = RADIOLIB_LORAWAN_JOIN_REQUEST_TYPE;
|
||
LoRaWANNode::hton<uint64_t>(&micBuff[1], joinEUI);
|
||
LoRaWANNode::hton<uint16_t>(&micBuff[9], this->devNonce);
|
||
memcpy(&micBuff[11], joinAcceptMsg, lenRx);
|
||
|
||
if(!verifyMIC(micBuff, lenRx + 11, this->jSIntKey)) {
|
||
return(RADIOLIB_ERR_CRC_MISMATCH);
|
||
}
|
||
|
||
} else {
|
||
// 1.0 version
|
||
if(!verifyMIC(joinAcceptMsg, lenRx, nwkKey)) {
|
||
return(RADIOLIB_ERR_CRC_MISMATCH);
|
||
}
|
||
|
||
}
|
||
|
||
// parse other contents
|
||
this->homeNetId = LoRaWANNode::ntoh<uint32_t>(&joinAcceptMsg[RADIOLIB_LORAWAN_JOIN_ACCEPT_HOME_NET_ID_POS], 3);
|
||
this->devAddr = LoRaWANNode::ntoh<uint32_t>(&joinAcceptMsg[RADIOLIB_LORAWAN_JOIN_ACCEPT_DEV_ADDR_POS]);
|
||
|
||
// parse Rx1 delay (and subsequently Rx2)
|
||
this->rxDelays[0] = joinAcceptMsg[RADIOLIB_LORAWAN_JOIN_ACCEPT_RX_DELAY_POS]*1000;
|
||
if(this->rxDelays[0] == 0) {
|
||
this->rxDelays[0] = RADIOLIB_LORAWAN_RECEIVE_DELAY_1_MS;
|
||
}
|
||
this->rxDelays[1] = this->rxDelays[0] + 1000;
|
||
|
||
// process CFlist if present
|
||
if(lenRx == RADIOLIB_LORAWAN_JOIN_ACCEPT_MAX_LEN) {
|
||
uint8_t cfList[RADIOLIB_LORAWAN_JOIN_ACCEPT_CFLIST_LEN] = { 0 };
|
||
memcpy(&cfList[0], &joinAcceptMsg[RADIOLIB_LORAWAN_JOIN_ACCEPT_CFLIST_POS], RADIOLIB_LORAWAN_JOIN_ACCEPT_CFLIST_LEN);
|
||
this->setupChannels(cfList);
|
||
} else {
|
||
this->setupChannels(nullptr);
|
||
}
|
||
|
||
// prepare buffer for key derivation
|
||
uint8_t keyDerivationBuff[RADIOLIB_AES128_BLOCK_SIZE] = { 0 };
|
||
LoRaWANNode::hton<uint32_t>(&keyDerivationBuff[RADIOLIB_LORAWAN_JOIN_ACCEPT_JOIN_NONCE_POS], joinNonce, 3);
|
||
|
||
// check protocol version (1.0 vs 1.1)
|
||
if(this->rev == 1) {
|
||
// 1.1 version, derive the keys
|
||
LoRaWANNode::hton<uint64_t>(&keyDerivationBuff[RADIOLIB_LORAWAN_JOIN_ACCEPT_JOIN_EUI_POS], joinEUI);
|
||
LoRaWANNode::hton<uint16_t>(&keyDerivationBuff[RADIOLIB_LORAWAN_JOIN_ACCEPT_DEV_NONCE_POS], this->devNonce);
|
||
keyDerivationBuff[0] = RADIOLIB_LORAWAN_JOIN_ACCEPT_APP_S_KEY;
|
||
|
||
RadioLibAES128Instance.init(appKey);
|
||
RadioLibAES128Instance.encryptECB(keyDerivationBuff, RADIOLIB_AES128_BLOCK_SIZE, this->appSKey);
|
||
|
||
keyDerivationBuff[0] = RADIOLIB_LORAWAN_JOIN_ACCEPT_F_NWK_S_INT_KEY;
|
||
RadioLibAES128Instance.init(nwkKey);
|
||
RadioLibAES128Instance.encryptECB(keyDerivationBuff, RADIOLIB_AES128_BLOCK_SIZE, this->fNwkSIntKey);
|
||
|
||
keyDerivationBuff[0] = RADIOLIB_LORAWAN_JOIN_ACCEPT_S_NWK_S_INT_KEY;
|
||
RadioLibAES128Instance.init(nwkKey);
|
||
RadioLibAES128Instance.encryptECB(keyDerivationBuff, RADIOLIB_AES128_BLOCK_SIZE, this->sNwkSIntKey);
|
||
|
||
keyDerivationBuff[0] = RADIOLIB_LORAWAN_JOIN_ACCEPT_NWK_S_ENC_KEY;
|
||
RadioLibAES128Instance.init(nwkKey);
|
||
RadioLibAES128Instance.encryptECB(keyDerivationBuff, RADIOLIB_AES128_BLOCK_SIZE, this->nwkSEncKey);
|
||
|
||
// enqueue the RekeyInd MAC command to be sent in the next uplink
|
||
LoRaWANMacCommand_t cmd = {
|
||
.cid = RADIOLIB_LORAWAN_MAC_CMD_REKEY,
|
||
.payload = { this->rev },
|
||
.len = sizeof(uint8_t),
|
||
.repeat = 0x01 << RADIOLIB_LORAWAN_ADR_ACK_LIMIT_EXP,
|
||
};
|
||
state = pushMacCommand(&cmd, &this->commandsUp);
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
} else {
|
||
// 1.0 version, just derive the keys
|
||
LoRaWANNode::hton<uint32_t>(&keyDerivationBuff[RADIOLIB_LORAWAN_JOIN_ACCEPT_HOME_NET_ID_POS], this->homeNetId, 3);
|
||
LoRaWANNode::hton<uint16_t>(&keyDerivationBuff[RADIOLIB_LORAWAN_JOIN_ACCEPT_DEV_ADDR_POS], this->devNonce);
|
||
keyDerivationBuff[0] = RADIOLIB_LORAWAN_JOIN_ACCEPT_APP_S_KEY;
|
||
RadioLibAES128Instance.init(nwkKey);
|
||
RadioLibAES128Instance.encryptECB(keyDerivationBuff, RADIOLIB_AES128_BLOCK_SIZE, this->appSKey);
|
||
|
||
keyDerivationBuff[0] = RADIOLIB_LORAWAN_JOIN_ACCEPT_F_NWK_S_INT_KEY;
|
||
RadioLibAES128Instance.init(nwkKey);
|
||
RadioLibAES128Instance.encryptECB(keyDerivationBuff, RADIOLIB_AES128_BLOCK_SIZE, this->fNwkSIntKey);
|
||
|
||
memcpy(this->sNwkSIntKey, this->fNwkSIntKey, RADIOLIB_AES128_KEY_SIZE);
|
||
memcpy(this->nwkSEncKey, this->fNwkSIntKey, RADIOLIB_AES128_KEY_SIZE);
|
||
|
||
}
|
||
|
||
// reset all frame counters
|
||
this->fcntUp = 0;
|
||
this->aFcntDown = 0;
|
||
this->nFcntDown = 0;
|
||
this->confFcntUp = RADIOLIB_LORAWAN_FCNT_NONE;
|
||
this->confFcntDown = RADIOLIB_LORAWAN_FCNT_NONE;
|
||
this->adrFcnt = 0;
|
||
|
||
#if !defined(RADIOLIB_EEPROM_UNSUPPORTED)
|
||
// save the device address & keys as well as JoinAccept values; these are only ever set when joining
|
||
mod->hal->setPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_DEV_ADDR_ID, this->devAddr);
|
||
mod->hal->writePersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_APP_S_KEY_ID), this->appSKey, RADIOLIB_AES128_BLOCK_SIZE);
|
||
mod->hal->writePersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_FNWK_SINT_KEY_ID), this->fNwkSIntKey, RADIOLIB_AES128_BLOCK_SIZE);
|
||
mod->hal->writePersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_SNWK_SINT_KEY_ID), this->sNwkSIntKey, RADIOLIB_AES128_BLOCK_SIZE);
|
||
mod->hal->writePersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_NWK_SENC_KEY_ID), this->nwkSEncKey, RADIOLIB_AES128_BLOCK_SIZE);
|
||
|
||
// save join-request parameters
|
||
mod->hal->setPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_HOME_NET_ID, this->homeNetId);
|
||
mod->hal->setPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_JOIN_NONCE_ID, this->joinNonce);
|
||
|
||
this->saveSession();
|
||
this->saveChannels();
|
||
|
||
// everything written to NVM, write current table version to persistent storage and set magic number
|
||
mod->hal->setPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_TABLE_VERSION_ID, RADIOLIB_PERSISTENT_PARAM_LORAWAN_TABLE_VERSION);
|
||
mod->hal->setPersistentParameter<uint16_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_MAGIC_ID, RADIOLIB_LORAWAN_MAGIC);
|
||
#endif
|
||
|
||
this->isJoinedFlag = true;
|
||
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
|
||
int16_t LoRaWANNode::beginABP(uint32_t addr, uint8_t* nwkSKey, uint8_t* appSKey, uint8_t* fNwkSIntKey, uint8_t* sNwkSIntKey, bool force) {
|
||
|
||
#if !defined(RADIOLIB_EEPROM_UNSUPPORTED)
|
||
// check if we actually need to restart from a clean session
|
||
Module* mod = this->phyLayer->getMod();
|
||
if(!force && (mod->hal->getPersistentParameter<uint16_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_MAGIC_ID) == RADIOLIB_LORAWAN_MAGIC)) {
|
||
// the device has joined already, we can just pull the data from persistent storage
|
||
RADIOLIB_DEBUG_PRINTLN("Found existing session; restoring...");
|
||
return(this->restore());
|
||
}
|
||
#else
|
||
(void)force;
|
||
#endif
|
||
|
||
this->devAddr = addr;
|
||
memcpy(this->appSKey, appSKey, RADIOLIB_AES128_KEY_SIZE);
|
||
memcpy(this->nwkSEncKey, nwkSKey, RADIOLIB_AES128_KEY_SIZE);
|
||
if(fNwkSIntKey) {
|
||
this->rev = 1;
|
||
memcpy(this->fNwkSIntKey, fNwkSIntKey, RADIOLIB_AES128_KEY_SIZE);
|
||
} else {
|
||
memcpy(this->fNwkSIntKey, nwkSKey, RADIOLIB_AES128_KEY_SIZE);
|
||
}
|
||
if(sNwkSIntKey) {
|
||
memcpy(this->sNwkSIntKey, sNwkSIntKey, RADIOLIB_AES128_KEY_SIZE);
|
||
}
|
||
|
||
// set the physical layer configuration
|
||
this->txPwrCur = this->band->powerMax;
|
||
int16_t state = this->setPhyProperties();
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
// setup uplink/downlink frequencies and datarates
|
||
state = this->setupChannels(nullptr);
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK] = (this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][0].drMax + this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][0].drMin) / 2;
|
||
// downlink datarate is calculated using a specific uplink channel, so don't care here
|
||
|
||
#if !defined(RADIOLIB_EEPROM_UNSUPPORTED)
|
||
// save the device address & keys
|
||
mod->hal->setPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_DEV_ADDR_ID, this->devAddr);
|
||
mod->hal->writePersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_APP_S_KEY_ID), this->appSKey, RADIOLIB_AES128_BLOCK_SIZE);
|
||
mod->hal->writePersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_FNWK_SINT_KEY_ID), this->fNwkSIntKey, RADIOLIB_AES128_BLOCK_SIZE);
|
||
mod->hal->writePersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_SNWK_SINT_KEY_ID), this->sNwkSIntKey, RADIOLIB_AES128_BLOCK_SIZE);
|
||
mod->hal->writePersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_NWK_SENC_KEY_ID), this->nwkSEncKey, RADIOLIB_AES128_BLOCK_SIZE);
|
||
|
||
this->saveSession();
|
||
this->saveChannels();
|
||
|
||
// everything written to NVM, write current table version to persistent storage and set magic number
|
||
mod->hal->setPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_TABLE_VERSION_ID, RADIOLIB_PERSISTENT_PARAM_LORAWAN_TABLE_VERSION);
|
||
mod->hal->setPersistentParameter<uint16_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_MAGIC_ID, RADIOLIB_LORAWAN_MAGIC);
|
||
#endif
|
||
|
||
this->isJoinedFlag = true;
|
||
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
|
||
bool LoRaWANNode::isJoined() {
|
||
return(this->isJoinedFlag);
|
||
}
|
||
|
||
#if !defined(RADIOLIB_EEPROM_UNSUPPORTED)
|
||
int16_t LoRaWANNode::saveSession() {
|
||
Module* mod = this->phyLayer->getMod();
|
||
|
||
// store session configuration (MAC commands)
|
||
if(mod->hal->getPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_VERSION_ID) != this->rev)
|
||
mod->hal->setPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_VERSION_ID, this->rev);
|
||
|
||
if(mod->hal->getPersistentParameter<uint16_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_DEV_NONCE_ID) != this->devNonce)
|
||
mod->hal->setPersistentParameter<uint16_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_DEV_NONCE_ID, this->devNonce);
|
||
|
||
uint8_t txDrRx2Dr = (this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK] << 4) | this->rx2.drMax;
|
||
if(mod->hal->getPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_TXDR_RX2DR_ID) != txDrRx2Dr)
|
||
mod->hal->setPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_TXDR_RX2DR_ID, txDrRx2Dr);
|
||
|
||
if(mod->hal->getPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_TXPWR_CUR_ID) != this->txPwrCur)
|
||
mod->hal->setPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_TXPWR_CUR_ID, this->txPwrCur);
|
||
|
||
uint8_t rx1DrOffDel = (this->rx1DrOffset << 4) | (this->rxDelays[0] / 1000);
|
||
if(mod->hal->getPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_RX1_DROFF_DEL_ID) != rx1DrOffDel)
|
||
mod->hal->setPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_RX1_DROFF_DEL_ID, rx1DrOffDel);
|
||
|
||
uint8_t rx2FreqBuf[3];
|
||
mod->hal->readPersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_RX2FREQ_ID), rx2FreqBuf, 3);
|
||
uint32_t rx2Freq = LoRaWANNode::ntoh<uint32_t>(&rx2FreqBuf[0], 3);
|
||
if(rx2Freq != uint32_t(this->rx2.freq * 10000)) {
|
||
rx2Freq = uint32_t(this->rx2.freq * 10000);
|
||
LoRaWANNode::hton<uint32_t>(&rx2FreqBuf[0], rx2Freq, 3);
|
||
mod->hal->writePersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_RX2FREQ_ID), rx2FreqBuf, 3);
|
||
}
|
||
|
||
uint8_t adrLimDel = (this->adrLimitExp << 4) | (this->adrDelayExp << 0);
|
||
if(mod->hal->getPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_ADR_LIM_DEL_ID) != adrLimDel)
|
||
mod->hal->setPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_ADR_LIM_DEL_ID, adrLimDel);
|
||
|
||
if(mod->hal->getPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_NBTRANS_ID) != this->nbTrans)
|
||
mod->hal->setPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_NBTRANS_ID, this->nbTrans);
|
||
|
||
// store all frame counters
|
||
if(mod->hal->getPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_A_FCNT_DOWN_ID) != this->aFcntDown)
|
||
mod->hal->setPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_A_FCNT_DOWN_ID, this->aFcntDown);
|
||
|
||
if(mod->hal->getPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_N_FCNT_DOWN_ID) != this->nFcntDown)
|
||
mod->hal->setPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_N_FCNT_DOWN_ID, this->nFcntDown);
|
||
|
||
if(mod->hal->getPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_CONF_FCNT_UP_ID) != this->confFcntUp)
|
||
mod->hal->setPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_CONF_FCNT_UP_ID, this->confFcntUp);
|
||
|
||
if(mod->hal->getPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_CONF_FCNT_DOWN_ID) != this->confFcntDown)
|
||
mod->hal->setPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_CONF_FCNT_DOWN_ID, this->confFcntDown);
|
||
|
||
if(mod->hal->getPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_ADR_FCNT_ID) != this->adrFcnt)
|
||
mod->hal->setPersistentParameter<uint32_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_ADR_FCNT_ID, this->adrFcnt);
|
||
|
||
// fcntUp is saved using highly efficient wear-leveling as this is by far going to be written most often
|
||
this->saveFcntUp();
|
||
|
||
// if there is, or was, any MAC command in the queue, overwrite with the current MAC queue
|
||
uint8_t queueBuff[sizeof(LoRaWANMacCommandQueue_t)] = { 0 };
|
||
mod->hal->readPersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_FOPTS_ID), queueBuff, sizeof(LoRaWANMacCommandQueue_t));
|
||
LoRaWANMacCommandQueue_t cmdTemp;
|
||
memcpy(&cmdTemp, queueBuff, sizeof(LoRaWANMacCommandQueue_t));
|
||
if(this->commandsUp.numCommands > 0 || cmdTemp.numCommands > 0) {
|
||
memcpy(queueBuff, &this->commandsUp, sizeof(LoRaWANMacCommandQueue_t));
|
||
mod->hal->writePersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_FOPTS_ID), queueBuff, sizeof(LoRaWANMacCommandQueue_t));
|
||
}
|
||
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
|
||
int16_t LoRaWANNode::saveFcntUp() {
|
||
Module* mod = this->phyLayer->getMod();
|
||
|
||
uint8_t fcntBuff[30] = { 0 };
|
||
mod->hal->readPersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_FCNT_UP_ID), fcntBuff, 30);
|
||
|
||
// we discard the first two bits - your flash will likely be far dead by the time you reach 2^30 uplinks
|
||
// the first two bytes of the remaining 30 bytes are stored straight into storage without additional wear leveling
|
||
// because they hardly ever change
|
||
uint8_t bits_30_22 = (uint8_t)(this->fcntUp >> 22);
|
||
if(fcntBuff[0] != bits_30_22)
|
||
mod->hal->setPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_FCNT_UP_ID, bits_30_22, 0);
|
||
uint8_t bits_22_14 = (uint8_t)(this->fcntUp >> 14);
|
||
if(fcntBuff[1] != bits_22_14)
|
||
mod->hal->setPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_FCNT_UP_ID, bits_22_14, 1);
|
||
|
||
// the next 7 bits are stored into one of few indices
|
||
// this index is indicated by the first byte that has its state (most significant bit) different from its predecessor
|
||
// if all have an equal state, restart from the beginning
|
||
// always flip the state bit of the byte that we write to, to indicate that this is the most recently written byte
|
||
uint8_t idx = 2;
|
||
uint8_t state = fcntBuff[idx] >> 7;
|
||
for(; idx < 5; idx++) {
|
||
if(fcntBuff[idx] >> 7 != state) {
|
||
break;
|
||
}
|
||
}
|
||
// check if the last written byte is equal to current, only rewrite if different
|
||
uint8_t bits_14_7 = (this->fcntUp >> 7) & 0x7F;
|
||
if((fcntBuff[idx - 1] & 0x7F) != bits_14_7) {
|
||
// find next index to write
|
||
idx = idx < 5 ? idx : 2;
|
||
|
||
// flip the first bit of this byte to indicate that we just wrote here
|
||
bits_14_7 |= (~(fcntBuff[idx] >> 7)) << 7;
|
||
mod->hal->setPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_FCNT_UP_ID, bits_14_7, idx);
|
||
}
|
||
|
||
// equally, the last 7 bits are stored into one of many indices
|
||
// this index is indicated by the first byte that has its state (most significant bit) different from its predecessor
|
||
// if all have an equal state, restart from the beginning
|
||
// always flip the state bit of the byte that we write to, to indicate that this is the most recently written byte
|
||
idx = 5;
|
||
state = fcntBuff[idx] >> 7;
|
||
for(; idx < 30; idx++) {
|
||
if(fcntBuff[idx] >> 7 != state) {
|
||
break;
|
||
}
|
||
}
|
||
idx = idx < 30 ? idx : 5;
|
||
uint8_t bits_7_0 = (this->fcntUp >> 0) & 0x7F;
|
||
|
||
// flip the first bit of this byte to indicate that we just wrote here
|
||
bits_7_0 |= (~(fcntBuff[idx] >> 7)) << 7;
|
||
mod->hal->setPersistentParameter<uint8_t>(RADIOLIB_PERSISTENT_PARAM_LORAWAN_FCNT_UP_ID, bits_7_0, idx);
|
||
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
|
||
int16_t LoRaWANNode::saveChannels() {
|
||
const uint8_t bytesPerChannel = 5;
|
||
const uint8_t numBytes = 2 * RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS * bytesPerChannel;
|
||
uint8_t buffer[numBytes] = { 0 };
|
||
for(uint8_t dir = 0; dir < 2; dir++) {
|
||
for(uint8_t i = 0; i < RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS; i++) {
|
||
uint8_t chBuff[bytesPerChannel] = { 0 };
|
||
chBuff[0] = (uint8_t)this->availableChannels[dir][i].enabled << 7;
|
||
chBuff[0] |= this->availableChannels[dir][i].idx;
|
||
uint32_t freq = this->availableChannels[dir][i].freq*10000.0;
|
||
LoRaWANNode::hton<uint32_t>(&chBuff[1], freq, 3);
|
||
chBuff[4] = this->availableChannels[dir][i].drMax << 4;
|
||
chBuff[4] |= this->availableChannels[dir][i].drMin << 0;
|
||
memcpy(&buffer[(dir * RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS * bytesPerChannel) + i * bytesPerChannel], chBuff, bytesPerChannel);
|
||
}
|
||
}
|
||
Module* mod = this->phyLayer->getMod();
|
||
mod->hal->writePersistentStorage(mod->hal->getPersistentAddr(RADIOLIB_PERSISTENT_PARAM_LORAWAN_FREQS_ID), buffer, numBytes);
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
#endif // RADIOLIB_EEPROM_UNSUPPORTED
|
||
|
||
#if defined(RADIOLIB_BUILD_ARDUINO)
|
||
int16_t LoRaWANNode::uplink(String& str, uint8_t port, bool isConfirmed, LoRaWANEvent_t* event) {
|
||
return(this->uplink(str.c_str(), port, isConfirmed, event));
|
||
}
|
||
#endif
|
||
|
||
int16_t LoRaWANNode::uplink(const char* str, uint8_t port, bool isConfirmed, LoRaWANEvent_t* event) {
|
||
return(this->uplink((uint8_t*)str, strlen(str), port, isConfirmed, event));
|
||
}
|
||
|
||
int16_t LoRaWANNode::uplink(uint8_t* data, size_t len, uint8_t port, bool isConfirmed, LoRaWANEvent_t* event) {
|
||
Module* mod = this->phyLayer->getMod();
|
||
|
||
// check if the Rx windows were closed after sending the previous uplink
|
||
// this FORCES a user to call downlink() after an uplink()
|
||
if(this->rxDelayEnd < this->rxDelayStart) {
|
||
// not enough time elapsed since the last uplink, we may still be in an Rx window
|
||
return(RADIOLIB_ERR_UPLINK_UNAVAILABLE);
|
||
}
|
||
|
||
// check destination port
|
||
if(port > 0xDF) {
|
||
return(RADIOLIB_ERR_INVALID_PORT);
|
||
}
|
||
// port 0 is only allowed for MAC-only payloads
|
||
if(port == RADIOLIB_LORAWAN_FPORT_MAC_COMMAND) {
|
||
if (!this->isMACPayload) {
|
||
return(RADIOLIB_ERR_INVALID_PORT);
|
||
}
|
||
// if this is MAC only payload, continue and reset for next uplink
|
||
this->isMACPayload = false;
|
||
}
|
||
|
||
int16_t state = RADIOLIB_ERR_NONE;
|
||
|
||
// check if there are some MAC commands to piggyback (only when piggybacking onto a application-frame)
|
||
uint8_t foptsLen = 0;
|
||
size_t foptsBufSize = 0;
|
||
if(this->commandsUp.numCommands > 0 && port != RADIOLIB_LORAWAN_FPORT_MAC_COMMAND) {
|
||
// there are, assume the maximum possible FOpts len for buffer allocation
|
||
foptsLen = this->commandsUp.len;
|
||
foptsBufSize = 15;
|
||
}
|
||
|
||
// check maximum payload len as defined in phy
|
||
if(len > this->band->payloadLenMax[this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK]]) {
|
||
return(RADIOLIB_ERR_PACKET_TOO_LONG);
|
||
}
|
||
|
||
// increase frame counter by one
|
||
this->fcntUp += 1;
|
||
|
||
// check if we need to do ADR stuff
|
||
uint32_t adrLimit = 0x01 << this->adrLimitExp;
|
||
uint32_t adrDelay = 0x01 << this->adrDelayExp;
|
||
bool adrAckReq = false;
|
||
if((this->fcntUp - this->adrFcnt) >= adrLimit) {
|
||
adrAckReq = true;
|
||
}
|
||
// if we hit the Limit + Delay, try one of three, in order:
|
||
// set TxPower to max, set DR to min, enable all defined channels
|
||
if ((this->fcntUp - this->adrFcnt) == (adrLimit + adrDelay)) {
|
||
|
||
// set the maximum power supported by both the module and the band
|
||
int8_t pwrPrev = this->txPwrCur;
|
||
state = this->setTxPower(this->band->powerMax);
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
if(this->txPwrCur == pwrPrev) {
|
||
|
||
// failed to increase Tx power, so try to decrease the datarate
|
||
if(this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK] > this->currentChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK].drMin) {
|
||
this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK]--;
|
||
this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK]--;
|
||
} else {
|
||
|
||
// failed to decrease datarate, so enable all available channels
|
||
for(size_t i = 0; i < RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS; i++) {
|
||
if(this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].idx != RADIOLIB_LORAWAN_CHANNEL_INDEX_NONE) {
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].enabled = true;
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK][i].enabled = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
// we tried something to improve the range, so increase the ADR frame counter by 'ADR delay'
|
||
this->adrFcnt += adrDelay;
|
||
}
|
||
|
||
// configure for uplink
|
||
this->selectChannels();
|
||
state = this->configureChannel(RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK);
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
// build the uplink message
|
||
// the first 16 bytes are reserved for MIC calculation blocks
|
||
size_t uplinkMsgLen = RADIOLIB_LORAWAN_FRAME_LEN(len, foptsBufSize);
|
||
#if RADIOLIB_STATIC_ONLY
|
||
uint8_t uplinkMsg[RADIOLIB_STATIC_ARRAY_SIZE];
|
||
#else
|
||
uint8_t* uplinkMsg = new uint8_t[uplinkMsgLen];
|
||
#endif
|
||
|
||
// set the packet fields
|
||
if(isConfirmed) {
|
||
uplinkMsg[RADIOLIB_LORAWAN_FHDR_LEN_START_OFFS] = RADIOLIB_LORAWAN_MHDR_MTYPE_CONF_DATA_UP;
|
||
this->confFcntUp = this->fcntUp;
|
||
} else {
|
||
uplinkMsg[RADIOLIB_LORAWAN_FHDR_LEN_START_OFFS] = RADIOLIB_LORAWAN_MHDR_MTYPE_UNCONF_DATA_UP;
|
||
}
|
||
uplinkMsg[RADIOLIB_LORAWAN_FHDR_LEN_START_OFFS] |= RADIOLIB_LORAWAN_MHDR_MAJOR_R1;
|
||
LoRaWANNode::hton<uint32_t>(&uplinkMsg[RADIOLIB_LORAWAN_FHDR_DEV_ADDR_POS], this->devAddr);
|
||
|
||
// length of fopts will be added later
|
||
uplinkMsg[RADIOLIB_LORAWAN_FHDR_FCTRL_POS] = 0x00;
|
||
if(this->adrEnabled) {
|
||
uplinkMsg[RADIOLIB_LORAWAN_FHDR_FCTRL_POS] |= RADIOLIB_LORAWAN_FCTRL_ADR_ENABLED;
|
||
if(adrAckReq) {
|
||
uplinkMsg[RADIOLIB_LORAWAN_FHDR_FCTRL_POS] |= RADIOLIB_LORAWAN_FCTRL_ADR_ACK_REQ;
|
||
}
|
||
}
|
||
|
||
// if the saved confirm-fcnt is set, set the ACK bit
|
||
bool isConfirmingDown = false;
|
||
if(this->confFcntDown != RADIOLIB_LORAWAN_FCNT_NONE) {
|
||
isConfirmingDown = true;
|
||
uplinkMsg[RADIOLIB_LORAWAN_FHDR_FCTRL_POS] |= RADIOLIB_LORAWAN_FCTRL_ACK;
|
||
}
|
||
|
||
LoRaWANNode::hton<uint16_t>(&uplinkMsg[RADIOLIB_LORAWAN_FHDR_FCNT_POS], (uint16_t)this->fcntUp);
|
||
|
||
// check if we have some MAC commands to append
|
||
if(foptsLen > 0) {
|
||
// assume maximum possible buffer size
|
||
uint8_t foptsBuff[15];
|
||
uint8_t* foptsPtr = foptsBuff;
|
||
|
||
// append all MAC replies into fopts buffer
|
||
int16_t i = 0;
|
||
for (; i < this->commandsUp.numCommands; i++) {
|
||
LoRaWANMacCommand_t cmd = this->commandsUp.commands[i];
|
||
memcpy(foptsPtr, &cmd, 1 + cmd.len);
|
||
foptsPtr += cmd.len + 1;
|
||
}
|
||
RADIOLIB_DEBUG_PRINTLN("Uplink MAC payload (%d commands):", this->commandsUp.numCommands);
|
||
RADIOLIB_DEBUG_HEXDUMP(foptsBuff, foptsLen);
|
||
|
||
// pop the commands from back to front
|
||
for (; i >= 0; i--) {
|
||
if(this->commandsUp.commands[i].repeat > 0) {
|
||
this->commandsUp.commands[i].repeat--;
|
||
} else {
|
||
deleteMacCommand(this->commandsUp.commands[i].cid, &this->commandsUp);
|
||
}
|
||
}
|
||
|
||
uplinkMsgLen = RADIOLIB_LORAWAN_FRAME_LEN(len, foptsLen);
|
||
uplinkMsg[RADIOLIB_LORAWAN_FHDR_FCTRL_POS] |= foptsLen;
|
||
|
||
// encrypt it
|
||
processAES(foptsBuff, foptsLen, this->nwkSEncKey, &uplinkMsg[RADIOLIB_LORAWAN_FHDR_FOPTS_POS], this->fcntUp, RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK, 0x01, true);
|
||
|
||
}
|
||
|
||
// set the port
|
||
uplinkMsg[RADIOLIB_LORAWAN_FHDR_FPORT_POS(foptsLen)] = port;
|
||
|
||
// select encryption key based on the target port
|
||
uint8_t* encKey = this->appSKey;
|
||
if(port == RADIOLIB_LORAWAN_FPORT_MAC_COMMAND) {
|
||
encKey = this->nwkSEncKey;
|
||
}
|
||
|
||
// encrypt the frame payload
|
||
processAES(data, len, encKey, &uplinkMsg[RADIOLIB_LORAWAN_FRAME_PAYLOAD_POS(foptsLen)], this->fcntUp, RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK, 0x00, true);
|
||
|
||
// create blocks for MIC calculation
|
||
uint8_t block0[RADIOLIB_AES128_BLOCK_SIZE] = { 0 };
|
||
block0[RADIOLIB_LORAWAN_BLOCK_MAGIC_POS] = RADIOLIB_LORAWAN_MIC_BLOCK_MAGIC;
|
||
block0[RADIOLIB_LORAWAN_BLOCK_DIR_POS] = RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK;
|
||
LoRaWANNode::hton<uint32_t>(&block0[RADIOLIB_LORAWAN_BLOCK_DEV_ADDR_POS], this->devAddr);
|
||
LoRaWANNode::hton<uint32_t>(&block0[RADIOLIB_LORAWAN_BLOCK_FCNT_POS], this->fcntUp);
|
||
block0[RADIOLIB_LORAWAN_MIC_BLOCK_LEN_POS] = uplinkMsgLen - RADIOLIB_AES128_BLOCK_SIZE - sizeof(uint32_t);
|
||
|
||
uint8_t block1[RADIOLIB_AES128_BLOCK_SIZE] = { 0 };
|
||
memcpy(block1, block0, RADIOLIB_AES128_BLOCK_SIZE);
|
||
if(this->confFcntDown != RADIOLIB_LORAWAN_FCNT_NONE) {
|
||
LoRaWANNode::hton<uint16_t>(&block1[RADIOLIB_LORAWAN_BLOCK_CONF_FCNT_POS], (uint16_t)this->confFcntDown);
|
||
}
|
||
block1[RADIOLIB_LORAWAN_MIC_DATA_RATE_POS] = this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK];
|
||
block1[RADIOLIB_LORAWAN_MIC_CH_INDEX_POS] = this->currentChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK].idx;
|
||
|
||
RADIOLIB_DEBUG_PRINTLN("uplinkMsg pre-MIC:");
|
||
RADIOLIB_DEBUG_HEXDUMP(uplinkMsg, uplinkMsgLen);
|
||
|
||
// calculate authentication codes
|
||
memcpy(uplinkMsg, block1, RADIOLIB_AES128_BLOCK_SIZE);
|
||
uint32_t micS = this->generateMIC(uplinkMsg, uplinkMsgLen - sizeof(uint32_t), this->sNwkSIntKey);
|
||
memcpy(uplinkMsg, block0, RADIOLIB_AES128_BLOCK_SIZE);
|
||
uint32_t micF = this->generateMIC(uplinkMsg, uplinkMsgLen - sizeof(uint32_t), this->fNwkSIntKey);
|
||
|
||
// check LoRaWAN revision
|
||
if(this->rev == 1) {
|
||
uint32_t mic = ((uint32_t)(micF & 0x0000FF00) << 16) | ((uint32_t)(micF & 0x0000000FF) << 16) | ((uint32_t)(micS & 0x0000FF00) >> 0) | ((uint32_t)(micS & 0x0000000FF) >> 0);
|
||
LoRaWANNode::hton<uint32_t>(&uplinkMsg[uplinkMsgLen - sizeof(uint32_t)], mic);
|
||
} else {
|
||
LoRaWANNode::hton<uint32_t>(&uplinkMsg[uplinkMsgLen - sizeof(uint32_t)], micF);
|
||
}
|
||
|
||
RADIOLIB_DEBUG_PRINTLN("uplinkMsg:");
|
||
RADIOLIB_DEBUG_HEXDUMP(uplinkMsg, uplinkMsgLen);
|
||
|
||
// perform CSMA if enabled.
|
||
if (enableCSMA) {
|
||
performCSMA();
|
||
}
|
||
|
||
// send it (without the MIC calculation blocks)
|
||
state = this->phyLayer->transmit(&uplinkMsg[RADIOLIB_LORAWAN_FHDR_LEN_START_OFFS], uplinkMsgLen - RADIOLIB_LORAWAN_FHDR_LEN_START_OFFS);
|
||
|
||
// set the timestamp so that we can measure when to start receiving
|
||
this->rxDelayStart = mod->hal->millis();
|
||
RADIOLIB_DEBUG_PRINTLN("Uplink sent <-- Rx Delay start");
|
||
|
||
#if !RADIOLIB_STATIC_ONLY
|
||
delete[] uplinkMsg;
|
||
#endif
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
// the downlink confirmation was acknowledged, so clear the counter value
|
||
this->confFcntDown = RADIOLIB_LORAWAN_FCNT_NONE;
|
||
|
||
// pass the extra info if requested
|
||
if(event) {
|
||
event->dir = RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK;
|
||
event->confirmed = isConfirmed;
|
||
event->confirming = isConfirmingDown;
|
||
event->datarate = this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK];
|
||
event->freq = currentChannels[event->dir].freq;
|
||
event->power = this->txPwrCur;
|
||
event->fcnt = this->fcntUp;
|
||
event->port = port;
|
||
}
|
||
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
|
||
int16_t LoRaWANNode::downlinkCommon() {
|
||
Module* mod = this->phyLayer->getMod();
|
||
const uint32_t scanGuard = 10;
|
||
|
||
// check if there are any upcoming Rx windows
|
||
// if the Rx1 window has already started, you're too late, because most downlinks happen in Rx1
|
||
if(mod->hal->millis() - this->rxDelayStart > (this->rxDelays[0] - scanGuard)) {
|
||
// if between start of Rx1 and end of Rx2, wait until Rx2 closes
|
||
if(mod->hal->millis() - this->rxDelayStart < this->rxDelays[1]) {
|
||
mod->hal->delay(this->rxDelays[1] + this->rxDelayStart - mod->hal->millis());
|
||
}
|
||
// update the end timestamp in case user got stuck between uplink and downlink
|
||
this->rxDelayEnd = mod->hal->millis();
|
||
return(RADIOLIB_ERR_NO_RX_WINDOW);
|
||
}
|
||
|
||
// configure for downlink
|
||
int16_t state = this->configureChannel(RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK);
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
// downlink messages are sent with inverted IQ
|
||
if(!this->FSK) {
|
||
state = this->phyLayer->invertIQ(true);
|
||
RADIOLIB_ASSERT(state);
|
||
}
|
||
|
||
// create the masks that are required for receiving downlinks
|
||
uint16_t irqFlags = 0x0000;
|
||
uint16_t irqMask = 0x0000;
|
||
this->phyLayer->irqRxDoneRxTimeout(irqFlags, irqMask);
|
||
|
||
this->phyLayer->setPacketReceivedAction(LoRaWANNodeOnDownlinkAction);
|
||
|
||
// perform listening in the two Rx windows
|
||
for(uint8_t i = 0; i < 2; i++) {
|
||
downlinkAction = false;
|
||
|
||
// calculate the Rx timeout
|
||
// according to the spec, this must be at least enough time to effectively detect a preamble
|
||
// but pad it a bit on both sides (start and end) to make sure it is wide enough
|
||
uint32_t timeoutHost = this->phyLayer->getTimeOnAir(0) + 2*scanGuard*1000;
|
||
uint32_t timeoutMod = this->phyLayer->calculateRxTimeout(timeoutHost);
|
||
|
||
// wait for the start of the Rx window
|
||
// the waiting duration is shortened a bit to cover any possible timing errors
|
||
uint32_t waitLen = this->rxDelays[i] - (mod->hal->millis() - this->rxDelayStart);
|
||
if(waitLen > scanGuard) {
|
||
waitLen -= scanGuard;
|
||
}
|
||
mod->hal->delay(waitLen);
|
||
|
||
// open Rx window by starting receive with specified timeout
|
||
state = this->phyLayer->startReceive(timeoutMod, irqFlags, irqMask, 0);
|
||
RADIOLIB_DEBUG_PRINTLN("Opening Rx%d window (%d us timeout)... <-- Rx Delay end ", i+1, timeoutHost);
|
||
|
||
// wait for the timeout to complete (and a small additional delay)
|
||
mod->hal->delay(timeoutHost / 1000 + scanGuard / 2);
|
||
RADIOLIB_DEBUG_PRINTLN("closing");
|
||
|
||
// check if the IRQ bit for Rx Timeout is set
|
||
if(!this->phyLayer->isRxTimeout()) {
|
||
break;
|
||
|
||
} else if(i == 0) {
|
||
// nothing in the first window, configure for the second
|
||
this->phyLayer->standby();
|
||
state = this->phyLayer->setFrequency(this->rx2.freq);
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
DataRate_t dataRate;
|
||
findDataRate(this->rx2.drMax, &dataRate);
|
||
state = this->phyLayer->setDataRate(dataRate);
|
||
RADIOLIB_ASSERT(state);
|
||
}
|
||
|
||
}
|
||
// Rx windows are now closed
|
||
this->rxDelayEnd = mod->hal->millis();
|
||
|
||
// if we got here due to a timeout, stop ongoing activities
|
||
if(this->phyLayer->isRxTimeout()) {
|
||
this->phyLayer->standby(); // TODO check: this should be done automagically due to RxSingle?
|
||
if(!this->FSK) {
|
||
this->phyLayer->invertIQ(false);
|
||
}
|
||
|
||
return(RADIOLIB_ERR_RX_TIMEOUT);
|
||
}
|
||
|
||
// wait for the DIO to fire indicating a downlink is received
|
||
while(!downlinkAction) {
|
||
mod->hal->yield();
|
||
}
|
||
|
||
// we have a message, clear actions, go to standby and reset the IQ inversion
|
||
this->phyLayer->standby(); // TODO check: this should be done automagically due to RxSingle?
|
||
this->phyLayer->clearPacketReceivedAction();
|
||
if(!this->FSK) {
|
||
state = this->phyLayer->invertIQ(false);
|
||
RADIOLIB_ASSERT(state);
|
||
}
|
||
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
|
||
#if defined(RADIOLIB_BUILD_ARDUINO)
|
||
int16_t LoRaWANNode::downlink(String& str, LoRaWANEvent_t* event) {
|
||
int16_t state = RADIOLIB_ERR_NONE;
|
||
|
||
// build a temporary buffer
|
||
// LoRaWAN downlinks can have 250 bytes at most with 1 extra byte for NULL
|
||
size_t length = 0;
|
||
uint8_t data[251];
|
||
|
||
// wait for downlink
|
||
state = this->downlink(data, &length, event);
|
||
if(state == RADIOLIB_ERR_NONE) {
|
||
// add null terminator
|
||
data[length] = '\0';
|
||
|
||
// initialize Arduino String class
|
||
str = String((char*)data);
|
||
}
|
||
|
||
return(state);
|
||
}
|
||
#endif
|
||
|
||
int16_t LoRaWANNode::downlink(uint8_t* data, size_t* len, LoRaWANEvent_t* event) {
|
||
// handle Rx1 and Rx2 windows - returns RADIOLIB_ERR_NONE if a downlink is received
|
||
int16_t state = downlinkCommon();
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
// get the packet length
|
||
size_t downlinkMsgLen = this->phyLayer->getPacketLength();
|
||
RADIOLIB_DEBUG_PRINTLN("Downlink message length: %d", downlinkMsgLen);
|
||
|
||
// check the minimum required frame length
|
||
// an extra byte is subtracted because downlink frames may not have a port
|
||
if(downlinkMsgLen < RADIOLIB_LORAWAN_FRAME_LEN(0, 0) - 1 - RADIOLIB_AES128_BLOCK_SIZE) {
|
||
RADIOLIB_DEBUG_PRINTLN("Downlink message too short (%lu bytes)", downlinkMsgLen);
|
||
return(RADIOLIB_ERR_DOWNLINK_MALFORMED);
|
||
}
|
||
|
||
// build the buffer for the downlink message
|
||
// the first 16 bytes are reserved for MIC calculation block
|
||
#if !RADIOLIB_STATIC_ONLY
|
||
uint8_t* downlinkMsg = new uint8_t[RADIOLIB_AES128_BLOCK_SIZE + downlinkMsgLen];
|
||
#else
|
||
uint8_t downlinkMsg[RADIOLIB_STATIC_ARRAY_SIZE];
|
||
#endif
|
||
|
||
// set the MIC calculation block
|
||
memset(downlinkMsg, 0x00, RADIOLIB_AES128_BLOCK_SIZE);
|
||
downlinkMsg[RADIOLIB_LORAWAN_BLOCK_MAGIC_POS] = RADIOLIB_LORAWAN_MIC_BLOCK_MAGIC;
|
||
LoRaWANNode::hton<uint32_t>(&downlinkMsg[RADIOLIB_LORAWAN_BLOCK_DEV_ADDR_POS], this->devAddr);
|
||
downlinkMsg[RADIOLIB_LORAWAN_BLOCK_DIR_POS] = RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK;
|
||
downlinkMsg[RADIOLIB_LORAWAN_MIC_BLOCK_LEN_POS] = downlinkMsgLen - sizeof(uint32_t);
|
||
|
||
// read the data
|
||
state = this->phyLayer->readData(&downlinkMsg[RADIOLIB_AES128_BLOCK_SIZE], downlinkMsgLen);
|
||
// downlink frames are sent without CRC, which will raise error on SX127x
|
||
// we can ignore that error
|
||
if(state == RADIOLIB_ERR_LORA_HEADER_DAMAGED) {
|
||
state = RADIOLIB_ERR_NONE;
|
||
}
|
||
|
||
if(state != RADIOLIB_ERR_NONE) {
|
||
#if !RADIOLIB_STATIC_ONLY
|
||
delete[] downlinkMsg;
|
||
#endif
|
||
return(state);
|
||
}
|
||
|
||
// get the frame counter and set it to the MIC calculation block
|
||
uint16_t fcnt16 = LoRaWANNode::ntoh<uint16_t>(&downlinkMsg[RADIOLIB_LORAWAN_FHDR_FCNT_POS]);
|
||
LoRaWANNode::hton<uint16_t>(&downlinkMsg[RADIOLIB_LORAWAN_BLOCK_FCNT_POS], fcnt16);
|
||
|
||
// if this downlink is confirming an uplink, its MIC was generated with the least-significant 16 bits of that fcntUp
|
||
bool isConfirmingUp = false;
|
||
if((downlinkMsg[RADIOLIB_LORAWAN_FHDR_FCTRL_POS] & RADIOLIB_LORAWAN_FCTRL_ACK) && (this->rev == 1)) {
|
||
isConfirmingUp = true;
|
||
LoRaWANNode::hton<uint16_t>(&downlinkMsg[RADIOLIB_LORAWAN_BLOCK_CONF_FCNT_POS], (uint16_t)this->confFcntUp);
|
||
}
|
||
|
||
RADIOLIB_DEBUG_PRINTLN("downlinkMsg:");
|
||
RADIOLIB_DEBUG_HEXDUMP(downlinkMsg, RADIOLIB_AES128_BLOCK_SIZE + downlinkMsgLen);
|
||
|
||
// calculate length of FOpts and payload
|
||
uint8_t foptsLen = downlinkMsg[RADIOLIB_LORAWAN_FHDR_FCTRL_POS] & RADIOLIB_LORAWAN_FHDR_FOPTS_LEN_MASK;
|
||
int payLen = downlinkMsgLen - 8 - foptsLen - sizeof(uint32_t);
|
||
|
||
RADIOLIB_DEBUG_PRINTLN("FOpts: %02X", downlinkMsg[RADIOLIB_LORAWAN_FHDR_FCTRL_POS]);
|
||
|
||
// in LoRaWAN v1.1, a frame can be a network frame if there is no Application payload
|
||
// i.e., no payload at all (empty frame or FOpts only), or MAC only payload (FPort = 0)
|
||
bool isAppDownlink = true;
|
||
if(payLen <= 0) {
|
||
if(this->rev == 1) {
|
||
isAppDownlink = false;
|
||
}
|
||
}
|
||
else if(downlinkMsg[RADIOLIB_LORAWAN_FHDR_FPORT_POS(foptsLen)] == RADIOLIB_LORAWAN_FPORT_MAC_COMMAND) {
|
||
foptsLen = payLen - 1;
|
||
if(this->rev == 1) {
|
||
isAppDownlink = false;
|
||
}
|
||
}
|
||
RADIOLIB_DEBUG_PRINTLN("FOptsLen: %d", foptsLen);
|
||
|
||
// check the FcntDown value (Network or Application)
|
||
uint32_t fcntDownPrev = 0;
|
||
if (isAppDownlink) {
|
||
fcntDownPrev = this->aFcntDown;
|
||
} else {
|
||
fcntDownPrev = this->nFcntDown;
|
||
}
|
||
|
||
RADIOLIB_DEBUG_PRINTLN("fcnt: %d, fcntPrev: %d, isAppDownlink: %d", fcnt16, fcntDownPrev, (int)isAppDownlink);
|
||
|
||
// if this is not the first downlink...
|
||
// assume a 16-bit to 32-bit rollover if difference between counters in LSB is smaller than MAX_FCNT_GAP
|
||
// if that isn't the case and the received fcnt is smaller or equal to the last heard fcnt, then error
|
||
uint32_t fcnt32 = fcnt16;
|
||
if(fcntDownPrev > 0) {
|
||
if((fcnt16 <= fcntDownPrev) && ((0xFFFF - (uint16_t)fcntDownPrev + fcnt16) > RADIOLIB_LORAWAN_MAX_FCNT_GAP)) {
|
||
#if !RADIOLIB_STATIC_ONLY
|
||
delete[] downlinkMsg;
|
||
#endif
|
||
if (isAppDownlink) {
|
||
return(RADIOLIB_ERR_A_FCNT_DOWN_INVALID);
|
||
} else {
|
||
return(RADIOLIB_ERR_N_FCNT_DOWN_INVALID);
|
||
}
|
||
} else if (fcnt16 <= fcntDownPrev) {
|
||
uint16_t msb = (fcntDownPrev >> 16) + 1; // assume a rollover
|
||
fcnt32 |= ((uint32_t)msb << 16); // add back the MSB part
|
||
}
|
||
}
|
||
|
||
// check the MIC
|
||
if(!verifyMIC(downlinkMsg, RADIOLIB_AES128_BLOCK_SIZE + downlinkMsgLen, this->sNwkSIntKey)) {
|
||
#if !RADIOLIB_STATIC_ONLY
|
||
delete[] downlinkMsg;
|
||
#endif
|
||
return(RADIOLIB_ERR_CRC_MISMATCH);
|
||
}
|
||
|
||
// save current fcnt to respective frame counter
|
||
if (isAppDownlink) {
|
||
this->aFcntDown = fcnt32;
|
||
} else {
|
||
this->nFcntDown = fcnt32;
|
||
}
|
||
|
||
// if this is a confirmed frame, save the downlink number (only app frames can be confirmed)
|
||
bool isConfirmedDown = false;
|
||
if((downlinkMsg[RADIOLIB_LORAWAN_FHDR_LEN_START_OFFS] & 0xFE) == RADIOLIB_LORAWAN_MHDR_MTYPE_CONF_DATA_DOWN) {
|
||
this->confFcntDown = this->aFcntDown;
|
||
isConfirmedDown = true;
|
||
}
|
||
|
||
// check the address
|
||
uint32_t addr = LoRaWANNode::ntoh<uint32_t>(&downlinkMsg[RADIOLIB_LORAWAN_FHDR_DEV_ADDR_POS]);
|
||
if(addr != this->devAddr) {
|
||
RADIOLIB_DEBUG_PRINTLN("Device address mismatch, expected 0x%08X, got 0x%08X", this->devAddr, addr);
|
||
#if !RADIOLIB_STATIC_ONLY
|
||
delete[] downlinkMsg;
|
||
#endif
|
||
return(RADIOLIB_ERR_DOWNLINK_MALFORMED);
|
||
}
|
||
|
||
// process FOpts (if there are any)
|
||
if(foptsLen > 0) {
|
||
// there are some Fopts, decrypt them
|
||
uint8_t fopts[max(RADIOLIB_LORAWAN_FHDR_FOPTS_LEN_MASK, (int)foptsLen)];
|
||
|
||
// TODO it COULD be the case that the assumed FCnt rollover is incorrect, if possible figure out a way to catch this and retry with just fcnt16
|
||
// if there are <= 15 bytes of FOpts, they are in the FHDR, otherwise they are in the payload
|
||
// in case of the latter, process AES is if it were a normal payload but using the NwkSEncKey
|
||
if(foptsLen <= RADIOLIB_LORAWAN_FHDR_FOPTS_LEN_MASK) {
|
||
uint8_t ctrId = 0x01 + isAppDownlink; // see LoRaWAN v1.1 errata
|
||
processAES(&downlinkMsg[RADIOLIB_LORAWAN_FHDR_FOPTS_POS], (size_t)foptsLen, this->nwkSEncKey, fopts, fcnt32, RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK, ctrId, true);
|
||
} else {
|
||
processAES(&downlinkMsg[RADIOLIB_LORAWAN_FRAME_PAYLOAD_POS(0)], (size_t)foptsLen, this->nwkSEncKey, fopts, fcnt32, RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK, 0x00, true);
|
||
}
|
||
|
||
RADIOLIB_DEBUG_PRINTLN("fopts:");
|
||
RADIOLIB_DEBUG_HEXDUMP(fopts, foptsLen);
|
||
|
||
// process the MAC command(s)
|
||
int8_t remLen = foptsLen;
|
||
uint8_t* foptsPtr = fopts;
|
||
while(remLen > 0) {
|
||
LoRaWANMacCommand_t cmd = {
|
||
.cid = *foptsPtr,
|
||
.payload = { 0 },
|
||
.len = (uint8_t)min((remLen - 1), 5),
|
||
.repeat = 0,
|
||
};
|
||
memcpy(cmd.payload, foptsPtr + 1, cmd.len);
|
||
RADIOLIB_DEBUG_PRINTLN("[%02X]: %02X %02X %02X %02X %02X (%d)",
|
||
cmd.cid, cmd.payload[0], cmd.payload[1], cmd.payload[2], cmd.payload[3], cmd.payload[4], cmd.len);
|
||
|
||
// try to process the mac command
|
||
// TODO how to handle incomplete commands?
|
||
size_t processedLen = execMacCommand(&cmd) + 1;
|
||
|
||
// processing succeeded, move in the buffer to the next command
|
||
remLen -= processedLen;
|
||
foptsPtr += processedLen;
|
||
RADIOLIB_DEBUG_PRINTLN("Processed: %d, remaining: %d", processedLen, remLen);
|
||
}
|
||
|
||
// if FOptsLen for the next uplink is larger than can be piggybacked onto an uplink, send separate uplink
|
||
if(this->commandsUp.len > 15) {
|
||
size_t foptsBufSize = this->commandsUp.len;
|
||
#if RADIOLIB_STATIC_ONLY
|
||
uint8_t foptsBuff[RADIOLIB_STATIC_ARRAY_SIZE];
|
||
#else
|
||
uint8_t* foptsBuff = new uint8_t[foptsBufSize];
|
||
#endif
|
||
uint8_t* foptsPtr = foptsBuff;
|
||
// append all MAC replies into fopts buffer
|
||
int16_t i = 0;
|
||
for (; i < this->commandsUp.numCommands; i++) {
|
||
LoRaWANMacCommand_t cmd = this->commandsUp.commands[i];
|
||
memcpy(foptsPtr, &cmd, 1 + cmd.len);
|
||
foptsPtr += cmd.len + 1;
|
||
}
|
||
RADIOLIB_DEBUG_PRINTLN("Uplink MAC payload (%d commands):", this->commandsUp.numCommands);
|
||
RADIOLIB_DEBUG_HEXDUMP(foptsBuff, foptsBufSize);
|
||
|
||
// pop the commands from back to front
|
||
for (; i >= 0; i--) {
|
||
if(this->commandsUp.commands[i].repeat > 0) {
|
||
this->commandsUp.commands[i].repeat--;
|
||
} else {
|
||
deleteMacCommand(this->commandsUp.commands[i].cid, &this->commandsUp);
|
||
}
|
||
}
|
||
|
||
this->isMACPayload = true;
|
||
this->uplink(foptsBuff, foptsBufSize, RADIOLIB_LORAWAN_FPORT_MAC_COMMAND);
|
||
#if !RADIOLIB_STATIC_ONLY
|
||
delete[] foptsBuff;
|
||
#endif
|
||
|
||
#if RADIOLIB_STATIC_ONLY
|
||
uint8_t strDown[RADIOLIB_STATIC_ARRAY_SIZE];
|
||
#else
|
||
uint8_t* strDown = new uint8_t[this->band->payloadLenMax[this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK]]];
|
||
#endif
|
||
size_t lenDown = 0;
|
||
state = this->downlink(strDown, &lenDown);
|
||
#if !RADIOLIB_STATIC_ONLY
|
||
delete[] strDown;
|
||
#endif
|
||
RADIOLIB_ASSERT(state);
|
||
}
|
||
|
||
}
|
||
|
||
// a downlink was received, so reset the ADR counter to this uplink's fcnt
|
||
this->adrFcnt = this->fcntUp;
|
||
|
||
// pass the extra info if requested
|
||
if(event) {
|
||
event->dir = RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK;
|
||
event->confirmed = isConfirmedDown;
|
||
event->confirming = isConfirmingUp;
|
||
event->datarate = this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK];
|
||
event->freq = currentChannels[event->dir].freq;
|
||
event->power = this->txPwrCur;
|
||
event->fcnt = isAppDownlink ? this->aFcntDown : this->nFcntDown;
|
||
event->port = downlinkMsg[RADIOLIB_LORAWAN_FHDR_FPORT_POS(foptsLen)];
|
||
}
|
||
|
||
// process Application payload (if there is any)
|
||
if(payLen <= 0 || foptsLen > RADIOLIB_LORAWAN_FHDR_FOPTS_MAX_LEN) {
|
||
// no payload
|
||
*len = 0;
|
||
#if !RADIOLIB_STATIC_ONLY
|
||
delete[] downlinkMsg;
|
||
#endif
|
||
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
|
||
// there is payload, and so there should be a port too
|
||
// TODO pass the port?
|
||
*len = payLen - 1;
|
||
|
||
// TODO it COULD be the case that the assumed rollover is incorrect, then figure out a way to catch this and retry with just fcnt16
|
||
processAES(&downlinkMsg[RADIOLIB_LORAWAN_FRAME_PAYLOAD_POS(foptsLen)], payLen - 1, this->appSKey, data, fcnt32, RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK, 0x00, true);
|
||
|
||
#if !RADIOLIB_STATIC_ONLY
|
||
delete[] downlinkMsg;
|
||
#endif
|
||
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
|
||
#if defined(RADIOLIB_BUILD_ARDUINO)
|
||
int16_t LoRaWANNode::sendReceive(String& strUp, uint8_t port, String& strDown, bool isConfirmed, LoRaWANEvent_t* eventUp, LoRaWANEvent_t* eventDown) {
|
||
// send the uplink
|
||
int16_t state = this->uplink(strUp, port, isConfirmed, eventUp);
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
// wait for the downlink
|
||
state = this->downlink(strDown, eventDown);
|
||
return(state);
|
||
}
|
||
#endif
|
||
|
||
int16_t LoRaWANNode::sendReceive(const char* strUp, uint8_t port, uint8_t* dataDown, size_t* lenDown, bool isConfirmed, LoRaWANEvent_t* eventUp, LoRaWANEvent_t* eventDown) {
|
||
// send the uplink
|
||
int16_t state = this->uplink(strUp, port, isConfirmed, eventUp);
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
// wait for the downlink
|
||
state = this->downlink(dataDown, lenDown, eventDown);
|
||
return(state);
|
||
}
|
||
|
||
int16_t LoRaWANNode::sendReceive(uint8_t* dataUp, size_t lenUp, uint8_t port, uint8_t* dataDown, size_t* lenDown, bool isConfirmed, LoRaWANEvent_t* eventUp, LoRaWANEvent_t* eventDown) {
|
||
// send the uplink
|
||
int16_t state = this->uplink(dataUp, lenUp, port, isConfirmed, eventUp);
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
// wait for the downlink
|
||
state = this->downlink(dataDown, lenDown, eventDown);
|
||
return(state);
|
||
}
|
||
|
||
void LoRaWANNode::setDeviceStatus(uint8_t battLevel) {
|
||
this->battLevel = battLevel;
|
||
}
|
||
|
||
uint32_t LoRaWANNode::getFcntUp() {
|
||
return(this->fcntUp);
|
||
}
|
||
|
||
uint32_t LoRaWANNode::getNFcntDown() {
|
||
return(this->nFcntDown);
|
||
}
|
||
|
||
uint32_t LoRaWANNode::getAFcntDown() {
|
||
return(this->aFcntDown);
|
||
}
|
||
|
||
uint32_t LoRaWANNode::generateMIC(uint8_t* msg, size_t len, uint8_t* key) {
|
||
if((msg == NULL) || (len == 0)) {
|
||
return(0);
|
||
}
|
||
|
||
RadioLibAES128Instance.init(key);
|
||
uint8_t cmac[RADIOLIB_AES128_BLOCK_SIZE];
|
||
RadioLibAES128Instance.generateCMAC(msg, len, cmac);
|
||
return(((uint32_t)cmac[0]) | ((uint32_t)cmac[1] << 8) | ((uint32_t)cmac[2] << 16) | ((uint32_t)cmac[3]) << 24);
|
||
}
|
||
|
||
bool LoRaWANNode::verifyMIC(uint8_t* msg, size_t len, uint8_t* key) {
|
||
if((msg == NULL) || (len < sizeof(uint32_t))) {
|
||
return(0);
|
||
}
|
||
|
||
// extract MIC from the message
|
||
uint32_t micReceived = LoRaWANNode::ntoh<uint32_t>(&msg[len - sizeof(uint32_t)]);
|
||
|
||
// calculate the expected value and compare
|
||
uint32_t micCalculated = generateMIC(msg, len - sizeof(uint32_t), key);
|
||
if(micCalculated != micReceived) {
|
||
RADIOLIB_DEBUG_PRINTLN("MIC mismatch, expected %08x, got %08x", micCalculated, micReceived);
|
||
return(false);
|
||
}
|
||
|
||
return(true);
|
||
}
|
||
|
||
int16_t LoRaWANNode::setPhyProperties() {
|
||
// set the physical layer configuration
|
||
int16_t state = this->setTxPower(this->txPwrCur);
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
uint8_t syncWord[3] = { 0 };
|
||
uint8_t syncWordLen = 0;
|
||
size_t preLen = 0;
|
||
if(this->FSK) {
|
||
preLen = 8*RADIOLIB_LORAWAN_GFSK_PREAMBLE_LEN;
|
||
syncWord[0] = (uint8_t)(RADIOLIB_LORAWAN_GFSK_SYNC_WORD >> 16);
|
||
syncWord[1] = (uint8_t)(RADIOLIB_LORAWAN_GFSK_SYNC_WORD >> 8);
|
||
syncWord[2] = (uint8_t)RADIOLIB_LORAWAN_GFSK_SYNC_WORD;
|
||
syncWordLen = 3;
|
||
|
||
} else {
|
||
preLen = RADIOLIB_LORAWAN_LORA_PREAMBLE_LEN;
|
||
syncWord[0] = RADIOLIB_LORAWAN_LORA_SYNC_WORD;
|
||
syncWordLen = 1;
|
||
|
||
}
|
||
|
||
state = this->phyLayer->setSyncWord(syncWord, syncWordLen);
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
state = this->phyLayer->setPreambleLength(preLen);
|
||
return(state);
|
||
}
|
||
|
||
int16_t LoRaWANNode::setupChannels(uint8_t* cfList) {
|
||
size_t num = 0;
|
||
RADIOLIB_DEBUG_PRINTLN("Setting up channels");
|
||
|
||
// in case of frequency list-type band, copy the default TX channels into the available channels, with RX1 = TX
|
||
if(this->band->bandType == RADIOLIB_LORAWAN_BAND_DYNAMIC) {
|
||
RADIOLIB_DEBUG_PRINTLN("Dynamic band");
|
||
// copy the default defined channels into the first slots
|
||
for(; num < 3 && this->band->txFreqs[num].enabled; num++) {
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][num] = this->band->txFreqs[num];
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK][num] = this->band->txFreqs[num];
|
||
RADIOLIB_DEBUG_PRINTLN("Channel UL/DL %d frequency = %f MHz", this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][num].idx, this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][num].freq);
|
||
}
|
||
// if there is a cflist present, parse its frequencies into the next five slots, with datarate range copied from default channel 0
|
||
if(cfList != nullptr) {
|
||
RADIOLIB_DEBUG_PRINTLN("CFList present");
|
||
for(uint8_t i = 0; i < 5; i++, num++) {
|
||
LoRaWANChannel_t chnl;
|
||
chnl.enabled = true;
|
||
chnl.idx = num;
|
||
uint32_t freq = LoRaWANNode::ntoh<uint32_t>(&cfList[3*i], 3);
|
||
chnl.freq = (float)freq/10000.0;
|
||
chnl.drMin = this->band->txFreqs[0].drMin; // drMin is equal for all channels
|
||
chnl.drMax = this->band->txFreqs[0].drMax; // drMax is equal for all channels
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][num] = chnl;
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK][num] = chnl;
|
||
RADIOLIB_DEBUG_PRINTLN("Channel UL/DL %d frequency = %f MHz", chnl.idx, this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][num].freq);
|
||
}
|
||
}
|
||
for(; num < RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS; num++) {
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][num] = RADIOLIB_LORAWAN_CHANNEL_NONE;
|
||
}
|
||
|
||
} else { // RADIOLIB_LORAWAN_BAND_FIXED
|
||
if(cfList != nullptr) {
|
||
uint8_t chSpan = 0;
|
||
uint8_t chNum = 0;
|
||
// in case of mask-type bands, copy those frequencies that are masked true into the available TX channels
|
||
for(size_t chMaskCntl = 0; chMaskCntl < 5; chMaskCntl++) {
|
||
uint16_t mask = LoRaWANNode::ntoh<uint16_t>(&cfList[2*chMaskCntl]);
|
||
RADIOLIB_DEBUG_PRINTLN("mask[%d] = 0x%04x", chMaskCntl, mask);
|
||
for(size_t i = 0; i < 16; i++) {
|
||
// if we must roll over to next span, reset chNum and move to next channel span
|
||
if(chNum >= this->band->txSpans[chSpan].numChannels) {
|
||
chNum = 0;
|
||
chSpan++;
|
||
}
|
||
|
||
if(mask & (1UL << i)) {
|
||
if(chSpan >= this->band->numTxSpans) {
|
||
RADIOLIB_DEBUG_PRINTLN("channel bitmask overrun!");
|
||
return(RADIOLIB_ERR_UNKNOWN);
|
||
}
|
||
LoRaWANChannel_t chnl;
|
||
chnl.enabled = true;
|
||
chnl.idx = chMaskCntl*16 + i;
|
||
chnl.freq = this->band->txSpans[chSpan].freqStart + chNum*this->band->txSpans[chSpan].freqStep;
|
||
chnl.drMin = this->band->txSpans[chSpan].drMin;
|
||
chnl.drMax = this->band->txSpans[chSpan].drMax;
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][num] = chnl;
|
||
// downlink channels are dynamically calculated on each uplink in selectChannels()
|
||
RADIOLIB_DEBUG_PRINTLN("Channel UL %d frequency = %f MHz", num, this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][num].freq);
|
||
num++;
|
||
}
|
||
chNum++;
|
||
}
|
||
}
|
||
for(; chNum < RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS; chNum++) {
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][chNum] = RADIOLIB_LORAWAN_CHANNEL_NONE;
|
||
}
|
||
}
|
||
}
|
||
for (int i = 0; i < RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS; i++) {
|
||
RADIOLIB_DEBUG_PRINTLN("UL: %d %d %5.2f (%d - %d) | DL: %d %d %5.2f (%d - %d)",
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].idx,
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].enabled,
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].freq,
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].drMin,
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].drMax,
|
||
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK][i].idx,
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK][i].enabled,
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK][i].freq,
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK][i].drMin,
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK][i].drMax
|
||
);
|
||
}
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
|
||
int16_t LoRaWANNode::selectSubband(uint8_t idx) {
|
||
int16_t state = this->selectSubband((idx - 1) * 8, idx * 8 - 1);
|
||
return(state);
|
||
}
|
||
|
||
int16_t LoRaWANNode::selectSubband(uint8_t startChannel, uint8_t endChannel) {
|
||
if(this->isJoinedFlag) {
|
||
RADIOLIB_DEBUG_PRINTLN("There is already an active session - cannot change subband");
|
||
return(RADIOLIB_ERR_INVALID_CHANNEL);
|
||
}
|
||
if(this->band->bandType == RADIOLIB_LORAWAN_BAND_DYNAMIC) {
|
||
RADIOLIB_DEBUG_PRINTLN("This is a dynamic band plan which does not support subbands");
|
||
return(RADIOLIB_ERR_INVALID_CHANNEL);
|
||
}
|
||
|
||
uint8_t numChannels = endChannel - startChannel + 1;
|
||
if(startChannel > this->band->txSpans[0].numChannels) {
|
||
RADIOLIB_DEBUG_PRINTLN("There are only %d channels available in this band", this->band->txSpans[0].numChannels);
|
||
return(RADIOLIB_ERR_INVALID_CHANNEL);
|
||
}
|
||
if(startChannel + numChannels > this->band->txSpans[0].numChannels) {
|
||
numChannels = this->band->txSpans[0].numChannels - startChannel;
|
||
RADIOLIB_DEBUG_PRINTLN("Could only select %d channels due to end of band", numChannels);
|
||
}
|
||
if(numChannels > RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS) {
|
||
numChannels = RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS;
|
||
RADIOLIB_DEBUG_PRINTLN("Could only select %d channels due to specified limit", numChannels);
|
||
}
|
||
|
||
LoRaWANChannel_t chnl;
|
||
for(size_t chNum = 0; chNum < numChannels; chNum++) {
|
||
chnl.enabled = true;
|
||
chnl.idx = startChannel + chNum;
|
||
chnl.freq = this->band->txSpans[0].freqStart + chnl.idx*this->band->txSpans[0].freqStep;
|
||
chnl.drMin = this->band->txSpans[0].drMin;
|
||
chnl.drMax = this->band->txSpans[0].drMax;
|
||
availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][chNum] = chnl;
|
||
// downlink channel is dynamically calculated on each uplink in selectChannels()
|
||
RADIOLIB_DEBUG_PRINTLN("Channel UL %d frequency = %f MHz", chNum, availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][chNum].freq);
|
||
}
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
|
||
int16_t LoRaWANNode::selectChannelsJR(uint16_t devNonce, uint8_t joinDr) {
|
||
LoRaWANChannel_t channelUp;
|
||
LoRaWANChannel_t channelDown;
|
||
uint8_t drUp;
|
||
uint8_t drDown;
|
||
if(this->band->bandType == RADIOLIB_LORAWAN_BAND_DYNAMIC) {
|
||
// count the number of available channels for a join-request (default channels + join-request channels)
|
||
uint8_t numJRChannels = 0;
|
||
for(size_t i = 0; i < 3; i++) {
|
||
if(this->band->txFreqs[i].enabled) {
|
||
numJRChannels++;
|
||
}
|
||
if(this->band->txJoinReq[i].enabled) {
|
||
numJRChannels++;
|
||
}
|
||
}
|
||
|
||
// cycle through the available channels (seed with devNonce)
|
||
uint8_t channelId = devNonce % numJRChannels;
|
||
|
||
// find the channel whose index is selected
|
||
for(size_t i = 0; i < 3; i++) {
|
||
if(this->band->txFreqs[i].idx == channelId) {
|
||
channelUp = this->band->txFreqs[i];
|
||
break;
|
||
}
|
||
if(this->band->txJoinReq[i].idx == channelId) {
|
||
channelUp = this->band->txJoinReq[i];
|
||
}
|
||
}
|
||
|
||
// if join datarate is user-specified and valid, select that value; otherwise use
|
||
if(joinDr != RADIOLIB_LORAWAN_DATA_RATE_UNUSED) {
|
||
if(joinDr >= channelUp.drMin && joinDr <= channelUp.drMax) {
|
||
drUp = joinDr;
|
||
} else {
|
||
RADIOLIB_DEBUG_PRINTLN("Datarate %d is not valid (min: %d, max %d) - using default", joinDr, channelUp.drMin, channelUp.drMax);
|
||
joinDr = RADIOLIB_LORAWAN_DATA_RATE_UNUSED;
|
||
}
|
||
}
|
||
if(joinDr == RADIOLIB_LORAWAN_DATA_RATE_UNUSED) {
|
||
drUp = int((channelUp.drMax + channelUp.drMin) / 2);
|
||
}
|
||
|
||
// derive the downlink channel and datarate from the uplink channel and datarate
|
||
channelDown = channelUp;
|
||
drDown = getDownlinkDataRate(drUp, this->rx1DrOffset, this->band->rx1DataRateBase, channelDown.drMin, channelDown.drMax);
|
||
|
||
} else { // RADIOLIB_LORAWAN_BAND_FIXED
|
||
uint8_t spanID = 0;
|
||
uint8_t channelID = 0;
|
||
uint8_t numEnabledChannels = 0;
|
||
// if there are any predefined channels because user selected a subband, select one of these channels
|
||
for(; numEnabledChannels < RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS; numEnabledChannels++) {
|
||
if(this->availableChannels[numEnabledChannels][RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK].enabled == false) {
|
||
break;
|
||
}
|
||
}
|
||
if(numEnabledChannels > 0) {
|
||
uint8_t channelID = this->phyLayer->random(numEnabledChannels);
|
||
channelUp = this->availableChannels[channelID][RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK];
|
||
spanID = channelUp.idx / this->band->txSpans[0].numChannels;
|
||
channelID = channelUp.idx;
|
||
|
||
} else { // no pre-selected subband, cycle through size-8 (or size-9) blocks
|
||
channelUp.enabled = true;
|
||
uint8_t numBlocks = this->band->txSpans[0].numChannels / 8; // calculate number of 8-channel blocks
|
||
uint8_t numBlockChannels = 8 + (this->band->numTxSpans == 2 ? 1 : 0); // add a 9th channel if there's a second span
|
||
uint8_t blockID = devNonce % numBlocks; // currently selected block (seed with devNonce)
|
||
channelID = this->phyLayer->random(numBlockChannels); // select randomly from these 8 or 9 channels
|
||
RADIOLIB_DEBUG_PRINTLN("blocks: %d, channels/block: %d, blockID: %d, channelID: %d", numBlocks, numBlockChannels, blockID, channelID);
|
||
|
||
// if channel 0-7 is selected, retrieve this channel from span 0; otherwise span 1
|
||
if(channelID < 8) {
|
||
spanID = 0;
|
||
channelUp.idx = blockID * 8 + channelID;
|
||
} else {
|
||
spanID = 1;
|
||
channelUp.idx = blockID;
|
||
}
|
||
channelUp.freq = this->band->txSpans[spanID].freqStart + channelUp.idx*this->band->txSpans[spanID].freqStep;
|
||
}
|
||
|
||
// for fixed channel plans, the user-specified datarate is ignored and span-specific value must be used
|
||
drUp = this->band->txSpans[spanID].joinRequestDataRate;
|
||
|
||
// derive the downlink channel and datarate from the uplink channel and datarate
|
||
channelDown.enabled = true;
|
||
channelDown.idx = channelID % this->band->rx1Span.numChannels;
|
||
channelDown.freq = this->band->rx1Span.freqStart + channelDown.idx*this->band->rx1Span.freqStep;
|
||
channelDown.drMin = this->band->rx1Span.drMin;
|
||
channelDown.drMax = this->band->rx1Span.drMax;
|
||
drDown = getDownlinkDataRate(drUp, this->rx1DrOffset, this->band->rx1DataRateBase, channelDown.drMin, channelDown.drMax);
|
||
|
||
}
|
||
this->currentChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK] = channelUp;
|
||
this->currentChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK] = channelDown;
|
||
this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK] = drUp;
|
||
this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK] = drDown;
|
||
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
|
||
int16_t LoRaWANNode::selectChannels() {
|
||
// figure out which channel IDs are enabled (chMask may have disabled some) and are valid for the current datarate
|
||
uint8_t numChannels = 0;
|
||
uint8_t channelsEnabled[RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS];
|
||
for(uint8_t i = 0; i < RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS; i++) {
|
||
if(this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].enabled) {
|
||
if(this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK] >= this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].drMin
|
||
&& this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK] <= this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].drMax) {
|
||
channelsEnabled[numChannels] = i;
|
||
numChannels++;
|
||
}
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
if(numChannels == 0) {
|
||
RADIOLIB_DEBUG_PRINTLN("There are no channels defined - are you in ABP mode with no defined subband?");
|
||
return(RADIOLIB_ERR_INVALID_CHANNEL);
|
||
}
|
||
// select a random ID & channel from the list of enabled and possible channels
|
||
uint8_t channelID = channelsEnabled[this->phyLayer->random(numChannels)];
|
||
this->currentChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK] = availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][channelID];
|
||
|
||
if(this->band->bandType == RADIOLIB_LORAWAN_BAND_DYNAMIC) {
|
||
// for dynamic bands, the downlink channel is the one matched to the uplink channel
|
||
this->currentChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK] = availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK][channelID];
|
||
|
||
} else { // RADIOLIB_LORAWAN_BAND_FIXED
|
||
// for fixed bands, the downlink channel is the uplink channel ID `modulo` number of downlink channels
|
||
LoRaWANChannel_t channelDn;
|
||
channelDn.enabled = true;
|
||
channelDn.idx = this->currentChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK].idx % this->band->rx1Span.numChannels;
|
||
channelDn.freq = this->band->rx1Span.freqStart + channelDn.idx*this->band->rx1Span.freqStep;
|
||
channelDn.drMin = this->band->rx1Span.drMin;
|
||
channelDn.drMax = this->band->rx1Span.drMax;
|
||
this->currentChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK] = channelDn;
|
||
|
||
}
|
||
uint8_t drDown = getDownlinkDataRate(this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK], this->rx1DrOffset, this->band->rx1DataRateBase,
|
||
this->currentChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK].drMin, this->currentChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK].drMax);
|
||
this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK] = drDown;
|
||
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
|
||
int16_t LoRaWANNode::setDatarate(uint8_t drUp) {
|
||
// find the minimum and maximum available datarates by checking the enabled uplink channels
|
||
uint8_t drMin = RADIOLIB_LORAWAN_CHANNEL_NUM_DATARATES;
|
||
uint8_t drMax = 0;
|
||
for(size_t i = 0; i < RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS; i++) {
|
||
if(this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].enabled) {
|
||
drMin = RADIOLIB_MIN(drMin, this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].drMin);
|
||
drMax = RADIOLIB_MAX(drMax, this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].drMax);
|
||
}
|
||
}
|
||
if((drUp < drMin) || (drUp > drMax)) {
|
||
RADIOLIB_DEBUG_PRINTLN("Cannot configure DR %d (min: %d, max: %d)", drUp, drMin, drMax);
|
||
return(RADIOLIB_ERR_DATA_RATE_INVALID);
|
||
}
|
||
this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK] = drUp;
|
||
|
||
RADIOLIB_DEBUG_PRINTLN("Configured DR up = %d", drUp);
|
||
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
|
||
void LoRaWANNode::setADR(bool enable) {
|
||
this->adrEnabled = enable;
|
||
}
|
||
|
||
int16_t LoRaWANNode::setTxPower(int8_t txPower) {
|
||
int16_t state = RADIOLIB_ERR_INVALID_OUTPUT_POWER;
|
||
while(state == RADIOLIB_ERR_INVALID_OUTPUT_POWER) {
|
||
// go from the highest power and lower it until we hit one supported by the module
|
||
state = this->phyLayer->setOutputPower(txPower--);
|
||
}
|
||
if(state == RADIOLIB_ERR_NONE) {
|
||
txPower++;
|
||
this->txPwrCur = txPower;
|
||
}
|
||
return(state);
|
||
}
|
||
|
||
int16_t LoRaWANNode::findDataRate(uint8_t dr, DataRate_t* dataRate) {
|
||
uint8_t dataRateBand = this->band->dataRates[dr];
|
||
|
||
if(dataRateBand & RADIOLIB_LORAWAN_DATA_RATE_FSK_50_K) {
|
||
dataRate->fsk.bitRate = 50;
|
||
dataRate->fsk.freqDev = 25;
|
||
|
||
} else {
|
||
uint8_t bw = dataRateBand & 0x0C;
|
||
switch(bw) {
|
||
case(RADIOLIB_LORAWAN_DATA_RATE_BW_125_KHZ):
|
||
dataRate->lora.bandwidth = 125.0;
|
||
break;
|
||
case(RADIOLIB_LORAWAN_DATA_RATE_BW_250_KHZ):
|
||
dataRate->lora.bandwidth = 250.0;
|
||
break;
|
||
case(RADIOLIB_LORAWAN_DATA_RATE_BW_500_KHZ):
|
||
dataRate->lora.bandwidth = 500.0;
|
||
break;
|
||
default:
|
||
dataRate->lora.bandwidth = 125.0;
|
||
}
|
||
|
||
dataRate->lora.spreadingFactor = ((dataRateBand & 0x70) >> 4) + 6;
|
||
dataRate->lora.codingRate = (dataRateBand & 0x03) + 5;
|
||
RADIOLIB_DEBUG_PRINTLN("DR %d: LORA (SF: %d, BW: %f, CR: %d)",
|
||
dataRateBand, dataRate->lora.spreadingFactor, dataRate->lora.bandwidth, dataRate->lora.codingRate);
|
||
}
|
||
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
|
||
int16_t LoRaWANNode::configureChannel(uint8_t dir) {
|
||
// set the frequency
|
||
RADIOLIB_DEBUG_PRINTLN("");
|
||
RADIOLIB_DEBUG_PRINTLN("Channel frequency %cL = %f MHz", dir ? 'D' : 'U', this->currentChannels[dir].freq);
|
||
int state = this->phyLayer->setFrequency(this->currentChannels[dir].freq);
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
// if this channel is an FSK channel, toggle the FSK switch
|
||
if(this->band->dataRates[this->dataRates[dir]] == RADIOLIB_LORAWAN_DATA_RATE_FSK_50_K) {
|
||
this->FSK = true;
|
||
} else {
|
||
this->FSK = false;
|
||
}
|
||
|
||
DataRate_t dr;
|
||
findDataRate(this->dataRates[dir], &dr);
|
||
state = this->phyLayer->setDataRate(dr);
|
||
RADIOLIB_ASSERT(state);
|
||
|
||
if(this->FSK) {
|
||
state = this->phyLayer->setDataShaping(RADIOLIB_SHAPING_1_0);
|
||
RADIOLIB_ASSERT(state);
|
||
state = this->phyLayer->setEncoding(RADIOLIB_ENCODING_WHITENING);
|
||
}
|
||
|
||
return(state);
|
||
}
|
||
|
||
int16_t LoRaWANNode::pushMacCommand(LoRaWANMacCommand_t* cmd, LoRaWANMacCommandQueue_t* queue) {
|
||
if(queue->numCommands >= RADIOLIB_LORAWAN_MAC_COMMAND_QUEUE_SIZE) {
|
||
return(RADIOLIB_ERR_COMMAND_QUEUE_FULL);
|
||
}
|
||
|
||
memcpy(&queue->commands[queue->numCommands], cmd, sizeof(LoRaWANMacCommand_t));
|
||
queue->numCommands++;
|
||
queue->len += 1 + cmd->len; // 1 byte for command ID, len bytes for payload
|
||
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
|
||
int16_t LoRaWANNode::deleteMacCommand(uint8_t cid, LoRaWANMacCommandQueue_t* queue) {
|
||
if(queue->numCommands == 0) {
|
||
return(RADIOLIB_ERR_COMMAND_QUEUE_EMPTY);
|
||
}
|
||
|
||
for(size_t index = 0; index < queue->numCommands; index++) {
|
||
if(queue->commands[index].cid == cid) {
|
||
queue->len -= (1 + queue->commands[index].len); // 1 byte for command ID, len for payload
|
||
// move all subsequent commands one forward in the queue
|
||
if(index < RADIOLIB_LORAWAN_MAC_COMMAND_QUEUE_SIZE - 1) {
|
||
memmove(&queue->commands[index], &queue->commands[index + 1], (RADIOLIB_LORAWAN_MAC_COMMAND_QUEUE_SIZE - index - 1) * sizeof(LoRaWANMacCommand_t));
|
||
}
|
||
// set the latest element to all 0
|
||
memset(&queue->commands[RADIOLIB_LORAWAN_MAC_COMMAND_QUEUE_SIZE - 1], 0x00, sizeof(LoRaWANMacCommand_t));
|
||
queue->numCommands--;
|
||
return(RADIOLIB_ERR_NONE);
|
||
}
|
||
}
|
||
|
||
return(RADIOLIB_ERR_COMMAND_QUEUE_ITEM_NOT_FOUND);
|
||
}
|
||
|
||
size_t LoRaWANNode::execMacCommand(LoRaWANMacCommand_t* cmd) {
|
||
RADIOLIB_DEBUG_PRINTLN("exe MAC CID = %02x, len = %d", cmd->cid, cmd->len);
|
||
|
||
if(cmd->cid >= RADIOLIB_LORAWAN_MAC_CMD_PROPRIETARY) {
|
||
// TODO call user-provided callback for proprietary MAC commands?
|
||
return(cmd->len - 1);
|
||
}
|
||
|
||
switch(cmd->cid) {
|
||
case(RADIOLIB_LORAWAN_MAC_CMD_RESET): {
|
||
// get the server version
|
||
uint8_t srvVersion = cmd->payload[0];
|
||
RADIOLIB_DEBUG_PRINTLN("Server version: 1.%d", srvVersion);
|
||
if(srvVersion == this->rev) {
|
||
// valid server version, stop sending the ResetInd MAC command
|
||
deleteMacCommand(RADIOLIB_LORAWAN_MAC_CMD_RESET, &this->commandsUp);
|
||
}
|
||
return(1);
|
||
} break;
|
||
|
||
case(RADIOLIB_LORAWAN_MAC_CMD_LINK_CHECK): {
|
||
// TODO sent by gateway as reply to node request, how to get this info to the user?
|
||
uint8_t margin = cmd->payload[0];
|
||
uint8_t gwCnt = cmd->payload[1];
|
||
RADIOLIB_DEBUG_PRINTLN("Link check: margin = %d dB, gwCnt = %d", margin, gwCnt);
|
||
(void)margin;
|
||
(void)gwCnt;
|
||
return(2);
|
||
} break;
|
||
|
||
case(RADIOLIB_LORAWAN_MAC_CMD_LINK_ADR): {
|
||
// get the ADR configuration
|
||
// TODO all these configuration should only be set if all ACKs are set, otherwise retain previous state (per spec)
|
||
uint8_t drUp = (cmd->payload[0] & 0xF0) >> 4;
|
||
uint8_t txPower = cmd->payload[0] & 0x0F;
|
||
uint16_t chMask = LoRaWANNode::ntoh<uint16_t>(&cmd->payload[1]);
|
||
uint8_t chMaskCntl = (cmd->payload[3] & 0x70) >> 4;
|
||
uint8_t nbTrans = cmd->payload[3] & 0x0F;
|
||
RADIOLIB_DEBUG_PRINTLN("ADR REQ: dataRate = %d, txPower = %d, chMask = 0x%04x, chMaskCntl = %02x, nbTrans = %d", drUp, txPower, chMask, chMaskCntl, nbTrans);
|
||
|
||
// apply the configuration
|
||
uint8_t drAck = 0;
|
||
if(drUp == 0x0F) {
|
||
drAck = 1;
|
||
} else if (this->band->dataRates[drUp] != RADIOLIB_LORAWAN_DATA_RATE_UNUSED) {
|
||
uint8_t drDown = getDownlinkDataRate(drUp, this->rx1DrOffset, this->band->rx1DataRateBase,
|
||
this->currentChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK].drMin, this->currentChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK].drMax);
|
||
this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK] = drUp;
|
||
this->dataRates[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK] = drDown;
|
||
drAck = 1;
|
||
}
|
||
|
||
// try to apply the power configuration
|
||
uint8_t pwrAck = 0;
|
||
if(txPower == 0x0F) {
|
||
pwrAck = 1;
|
||
|
||
} else {
|
||
int8_t pwr = this->band->powerMax - 2*txPower;
|
||
int16_t state = this->setTxPower(pwr);
|
||
// only acknowledge if the requested datarate was succesfully configured
|
||
if((state == RADIOLIB_ERR_NONE) && (this->txPwrCur == pwr)) {
|
||
pwrAck = 1;
|
||
}
|
||
|
||
}
|
||
|
||
uint8_t chMaskAck = 1;
|
||
if(this->band->bandType == RADIOLIB_LORAWAN_BAND_DYNAMIC) {
|
||
for(size_t i = 0; i < RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS; i++) {
|
||
if(chMaskCntl == 0) {
|
||
// if chMaskCntl == 0, apply the mask by looking at each channel bit
|
||
RADIOLIB_DEBUG_PRINTLN("ADR channel %d: %d --> %d", this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].idx, this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].enabled, (chMask >> i) & 0x01);
|
||
if(chMask & (1UL << i)) {
|
||
// if it should be enabled but is not currently defined, stop immediately
|
||
if(this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].idx == RADIOLIB_LORAWAN_CHANNEL_INDEX_NONE) {
|
||
chMaskAck = 0;
|
||
break;
|
||
}
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].enabled = true;
|
||
} else {
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].enabled = false;
|
||
}
|
||
|
||
} else if(chMaskCntl == 6) {
|
||
// if chMaskCntl == 6, enable all defined channels
|
||
if(this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].idx != RADIOLIB_LORAWAN_CHANNEL_INDEX_NONE) {
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].enabled = true;
|
||
}
|
||
}
|
||
|
||
}
|
||
} else { // RADIOLIB_LORAWAN_BAND_FIXED
|
||
// delete any prior ADR responses from the uplink queue, but do not care if none is present yet
|
||
(void)deleteMacCommand(RADIOLIB_LORAWAN_MAC_CMD_LINK_ADR, &this->commandsUp);
|
||
RADIOLIB_DEBUG_PRINTLN("mask[%d] = 0x%04x", chMaskCntl, chMask);
|
||
uint8_t num = 0;
|
||
uint8_t chNum = chMaskCntl*16;
|
||
uint8_t chSpan = 0;
|
||
for(size_t i = 0; i < RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS; i++) {
|
||
RADIOLIB_DEBUG_PRINTLN("chNum: %d, chSpan: %d, i: %d, mask: %d", chNum, chSpan, i, chMask & (1UL << i));
|
||
// if we must roll over to next span, reset chNum and move to next channel span
|
||
if(chNum >= this->band->txSpans[chSpan].numChannels) {
|
||
chNum = 0;
|
||
chSpan++;
|
||
}
|
||
|
||
if(chMask & (1UL << i)) {
|
||
if(chSpan >= this->band->numTxSpans) {
|
||
RADIOLIB_DEBUG_PRINTLN("channel bitmask overrun!");
|
||
return(RADIOLIB_ERR_UNKNOWN);
|
||
}
|
||
LoRaWANChannel_t chnl;
|
||
chnl.enabled = true;
|
||
chnl.idx = chMaskCntl*16 + i;
|
||
chnl.freq = this->band->txSpans[chSpan].freqStart + chNum*this->band->txSpans[chSpan].freqStep;
|
||
chnl.drMin = this->band->txSpans[chSpan].drMin;
|
||
chnl.drMax = this->band->txSpans[chSpan].drMax;
|
||
availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][num] = chnl;
|
||
// downlink channels are dynamically calculated on each uplink in selectChannels()
|
||
RADIOLIB_DEBUG_PRINTLN("Channel UL %d (%d) frequency = %f MHz", num, chnl.idx, availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][num].freq);
|
||
num++;
|
||
}
|
||
chNum++;
|
||
}
|
||
}
|
||
// TODO should we actually save the channels because the masks may have changed stuff?
|
||
// this may wear the storage quickly on more mobile devices / changing RF environment
|
||
|
||
this->nbTrans = nbTrans;
|
||
|
||
// send the reply
|
||
cmd->len = 1;
|
||
cmd->payload[0] = (pwrAck << 2) | (drAck << 1) | (chMaskAck << 0);
|
||
RADIOLIB_DEBUG_PRINTLN("ADR ANS: status = 0x%02x", cmd->payload[0]);
|
||
pushMacCommand(cmd, &this->commandsUp);
|
||
return(4);
|
||
} break;
|
||
|
||
case(RADIOLIB_LORAWAN_MAC_CMD_DUTY_CYCLE): {
|
||
uint8_t maxDutyCycle = cmd->payload[0] & 0x0F;
|
||
RADIOLIB_DEBUG_PRINTLN("Max duty cycle: 1/2^%d", maxDutyCycle);
|
||
|
||
// TODO implement this
|
||
(void)maxDutyCycle;
|
||
return(1);
|
||
} break;
|
||
|
||
case(RADIOLIB_LORAWAN_MAC_CMD_RX_PARAM_SETUP): {
|
||
// get the configuration
|
||
this->rx1DrOffset = (cmd->payload[0] & 0x70) >> 4;
|
||
uint8_t rx1OffsAck = 1;
|
||
this->rx2.drMax = cmd->payload[0] & 0x0F;
|
||
uint8_t rx2Ack = 1;
|
||
uint32_t freqRaw = LoRaWANNode::ntoh<uint32_t>(&cmd->payload[1], 3);
|
||
this->rx2.freq = (float)freqRaw/10000.0;
|
||
RADIOLIB_DEBUG_PRINTLN("Rx param REQ: rx1DrOffset = %d, rx2DataRate = %d, freq = %f", this->rx1DrOffset, this->rx2.drMax, this->rx2.freq);
|
||
|
||
// apply the configuration
|
||
uint8_t chanAck = 0;
|
||
if(this->phyLayer->setFrequency(this->rx2.freq) == RADIOLIB_ERR_NONE) {
|
||
chanAck = 1;
|
||
this->phyLayer->setFrequency(this->currentChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK].freq);
|
||
}
|
||
|
||
// TODO this should be sent repeatedly until the next downlink
|
||
// send the reply
|
||
cmd->len = 1;
|
||
cmd->payload[0] = (rx1OffsAck << 2) | (rx2Ack << 1) | (chanAck << 0);
|
||
RADIOLIB_DEBUG_PRINTLN("Rx param ANS: status = 0x%02x", cmd->payload[0]);
|
||
pushMacCommand(cmd, &this->commandsUp);
|
||
return(4);
|
||
} break;
|
||
|
||
case(RADIOLIB_LORAWAN_MAC_CMD_DEV_STATUS): {
|
||
// set the uplink reply
|
||
cmd->len = 2;
|
||
cmd->payload[1] = this->battLevel;
|
||
int8_t snr = this->phyLayer->getSNR();
|
||
cmd->payload[0] = snr & 0x3F;
|
||
|
||
// push it to the uplink queue
|
||
RADIOLIB_DEBUG_PRINTLN("DevStatus ANS: status = 0x%02x%02x", cmd->payload[0], cmd->payload[1]);
|
||
pushMacCommand(cmd, &this->commandsUp);
|
||
return(0);
|
||
} break;
|
||
|
||
case(RADIOLIB_LORAWAN_MAC_CMD_NEW_CHANNEL): {
|
||
// get the configuration
|
||
uint8_t chIndex = cmd->payload[0];
|
||
uint32_t freqRaw = LoRaWANNode::ntoh<uint32_t>(&cmd->payload[1], 3);
|
||
float freq = (float)freqRaw/10000.0;
|
||
uint8_t maxDr = (cmd->payload[4] & 0xF0) >> 4;
|
||
uint8_t minDr = cmd->payload[4] & 0x0F;
|
||
RADIOLIB_DEBUG_PRINTLN("New channel: index = %d, freq = %f MHz, maxDr = %d, minDr = %d", chIndex, freq, maxDr, minDr);
|
||
uint8_t newChAck = 0;
|
||
uint8_t freqAck = 0;
|
||
for(int i = 0; i < RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS; i++) {
|
||
// find first empty channel and configure this as the new channel
|
||
if(this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].idx == RADIOLIB_LORAWAN_CHANNEL_INDEX_NONE) {
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].enabled = true;
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].idx = chIndex;
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].freq = freq;
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].drMin = minDr;
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].drMax = maxDr;
|
||
|
||
// downlink channel is identical to uplink channel
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK][i] = this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i];
|
||
newChAck = 1;
|
||
|
||
// check if the frequency is possible
|
||
if(this->phyLayer->setFrequency(this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].freq) == RADIOLIB_ERR_NONE) {
|
||
freqAck = 1;
|
||
this->phyLayer->setFrequency(this->currentChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK].freq);
|
||
}
|
||
|
||
break;
|
||
}
|
||
}
|
||
|
||
#if !defined(RADIOLIB_EEPROM_UNSUPPORTED)
|
||
// update saved frequencies
|
||
this->saveChannels();
|
||
#endif
|
||
|
||
// send the reply
|
||
cmd->len = 1;
|
||
cmd->payload[0] = (newChAck << 1) | (freqAck << 0);
|
||
|
||
pushMacCommand(cmd, &this->commandsUp);
|
||
|
||
return(5);
|
||
} break;
|
||
|
||
case(RADIOLIB_LORAWAN_MAC_CMD_DL_CHANNEL): {
|
||
// get the configuration
|
||
uint8_t chIndex = cmd->payload[0];
|
||
uint32_t freqRaw = LoRaWANNode::ntoh<uint32_t>(&cmd->payload[1], 3);
|
||
float freq = (float)freqRaw/10000.0;
|
||
RADIOLIB_DEBUG_PRINTLN("DL channel: index = %d, freq = %f MHz", chIndex, freq);
|
||
uint8_t freqDlAck = 0;
|
||
uint8_t freqUlAck = 0;
|
||
|
||
// check if the frequency is possible
|
||
if(this->phyLayer->setFrequency(freq) == RADIOLIB_ERR_NONE) {
|
||
freqDlAck = 1;
|
||
this->phyLayer->setFrequency(this->currentChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK].freq);
|
||
}
|
||
|
||
// update the downlink frequency
|
||
for(int i = 0; i < RADIOLIB_LORAWAN_NUM_AVAILABLE_CHANNELS; i++) {
|
||
if(this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK][i].idx == chIndex) {
|
||
this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_DOWNLINK][i].freq = freq;
|
||
// check if the corresponding uplink frequency is actually set
|
||
if(this->availableChannels[RADIOLIB_LORAWAN_CHANNEL_DIR_UPLINK][i].freq > 0) {
|
||
freqUlAck = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
#if !defined(RADIOLIB_EEPROM_UNSUPPORTED)
|
||
// update saved frequencies
|
||
this->saveChannels();
|
||
#endif
|
||
|
||
// send the reply
|
||
cmd->len = 1;
|
||
cmd->payload[0] = (freqUlAck << 1) | (freqDlAck << 0);
|
||
|
||
pushMacCommand(cmd, &this->commandsUp);
|
||
|
||
return(4);
|
||
} break;
|
||
|
||
case(RADIOLIB_LORAWAN_MAC_CMD_RX_TIMING_SETUP): {
|
||
// get the configuration
|
||
uint8_t delay = cmd->payload[0] & 0x0F;
|
||
RADIOLIB_DEBUG_PRINTLN("RX timing: delay = %d sec", delay);
|
||
|
||
// apply the configuration
|
||
if(delay == 0) {
|
||
delay = 1;
|
||
}
|
||
this->rxDelays[0] = delay * 1000;
|
||
this->rxDelays[1] = this->rxDelays[0] + 1000;
|
||
|
||
// send the reply
|
||
cmd->len = 0;
|
||
|
||
// TODO this should be sent repeatedly until the next downlink
|
||
pushMacCommand(cmd, &this->commandsUp);
|
||
|
||
return(1);
|
||
} break;
|
||
|
||
case(RADIOLIB_LORAWAN_MAC_CMD_TX_PARAM_SETUP): {
|
||
uint8_t dlDwell = (cmd->payload[0] & 0x20) >> 5;
|
||
uint8_t ulDwell = (cmd->payload[0] & 0x10) >> 4;
|
||
uint8_t maxEirpRaw = cmd->payload[0] & 0x0F;
|
||
|
||
// who the f came up with this ...
|
||
const uint8_t eirpEncoding[] = { 8, 10, 12, 13, 14, 16, 18, 20, 21, 24, 26, 27, 29, 30, 33, 36 };
|
||
uint8_t maxEirp = eirpEncoding[maxEirpRaw];
|
||
RADIOLIB_DEBUG_PRINTLN("TX timing: dlDwell = %d, dlDwell = %d, maxEirp = %d dBm", dlDwell, ulDwell, maxEirp);
|
||
|
||
// TODO implement this
|
||
(void)dlDwell;
|
||
(void)ulDwell;
|
||
(void)maxEirp;
|
||
return(1);
|
||
} break;
|
||
|
||
case(RADIOLIB_LORAWAN_MAC_CMD_REKEY): {
|
||
// get the server version
|
||
uint8_t srvVersion = cmd->payload[0];
|
||
RADIOLIB_DEBUG_PRINTLN("Server version: 1.%d", srvVersion);
|
||
if((srvVersion > 0) && (srvVersion <= this->rev)) {
|
||
// valid server version, stop sending the ReKey MAC command
|
||
deleteMacCommand(RADIOLIB_LORAWAN_MAC_CMD_REKEY, &this->commandsUp);
|
||
}
|
||
return(1);
|
||
} break;
|
||
|
||
case(RADIOLIB_LORAWAN_MAC_CMD_ADR_PARAM_SETUP): {
|
||
this->adrLimitExp = (cmd->payload[0] & 0xF0) >> 4;
|
||
this->adrDelayExp = cmd->payload[0] & 0x0F;
|
||
RADIOLIB_DEBUG_PRINTLN("ADR param setup: limitExp = %d, delayExp = %d", this->adrLimitExp, this->adrDelayExp);
|
||
|
||
return(1);
|
||
} break;
|
||
|
||
case(RADIOLIB_LORAWAN_MAC_CMD_DEVICE_TIME): {
|
||
// TODO implement this - sent by gateway as reply to node request
|
||
uint32_t gpsEpoch = LoRaWANNode::ntoh<uint32_t>(&cmd->payload[0]);
|
||
uint8_t fraction = cmd->payload[4];
|
||
RADIOLIB_DEBUG_PRINTLN("Network time: gpsEpoch = %d s, delayExp = %f", gpsEpoch, (float)fraction/256.0f);
|
||
(void)gpsEpoch;
|
||
(void)fraction;
|
||
return(5);
|
||
} break;
|
||
|
||
case(RADIOLIB_LORAWAN_MAC_CMD_FORCE_REJOIN): {
|
||
// TODO implement this
|
||
uint16_t rejoinReq = LoRaWANNode::ntoh<uint16_t>(&cmd->payload[0]);
|
||
uint8_t period = (rejoinReq & 0x3800) >> 11;
|
||
uint8_t maxRetries = (rejoinReq & 0x0700) >> 8;
|
||
uint8_t rejoinType = (rejoinReq & 0x0070) >> 4;
|
||
uint8_t dr = rejoinReq & 0x000F;
|
||
RADIOLIB_DEBUG_PRINTLN("Force rejoin: period = %d, maxRetries = %d, rejoinType = %d, dr = %d", period, maxRetries, rejoinType, dr);
|
||
(void)period;
|
||
(void)maxRetries;
|
||
(void)rejoinType;
|
||
(void)dr;
|
||
return(2);
|
||
} break;
|
||
|
||
case(RADIOLIB_LORAWAN_MAC_CMD_REJOIN_PARAM_SETUP): {
|
||
// TODO implement this
|
||
uint8_t maxTime = (cmd->payload[0] & 0xF0) >> 4;
|
||
uint8_t maxCount = cmd->payload[0] & 0x0F;
|
||
RADIOLIB_DEBUG_PRINTLN("Rejoin setup: maxTime = %d, maxCount = %d", maxTime, maxCount);
|
||
(void)maxTime;
|
||
(void)maxCount;
|
||
return(0);
|
||
} break;
|
||
}
|
||
|
||
return(0);
|
||
}
|
||
|
||
// The following function enables LMAC, a CSMA scheme for LoRa as specified
|
||
// in the LoRa Alliance Technical Recommendation #13.
|
||
// A user may enable CSMA to provide frames an additional layer of protection from interference.
|
||
// https://resources.lora-alliance.org/technical-recommendations/tr013-1-0-0-csma
|
||
void LoRaWANNode::performCSMA() {
|
||
|
||
// Compute initial random back-off.
|
||
// When BO is reduced to zero, the function returns and the frame is transmitted.
|
||
uint32_t BO = this->phyLayer->random(1, this->backoffMax + 1);
|
||
while (BO > 0) {
|
||
// DIFS: Check channel for DIFS_slots
|
||
bool channelFreeDuringDIFS = true;
|
||
for (uint8_t i = 0; i < this->difsSlots; i++) {
|
||
if (performCAD()) {
|
||
RADIOLIB_DEBUG_PRINTLN("OCCUPIED CHANNEL DURING DIFS");
|
||
channelFreeDuringDIFS = false;
|
||
// Channel is occupied during DIFS, hop to another.
|
||
this->selectChannels();
|
||
break;
|
||
}
|
||
}
|
||
// Start reducing BO counter if DIFS slot was free.
|
||
if (channelFreeDuringDIFS) {
|
||
// Continue decrementing BO with per each CAD reporting free channel.
|
||
while (BO > 0) {
|
||
if (performCAD()) {
|
||
RADIOLIB_DEBUG_PRINTLN("OCCUPIED CHANNEL DURING BO");
|
||
// Channel is busy during CAD, hop to another and return to DIFS state again.
|
||
this->selectChannels();
|
||
break; // Exit loop. Go back to DIFS state.
|
||
}
|
||
BO--; // Decrement BO by one if channel is free
|
||
}
|
||
}
|
||
}
|
||
}
|
||
bool LoRaWANNode::performCAD() {
|
||
int16_t state = this->phyLayer->scanChannel();
|
||
if ((state == RADIOLIB_PREAMBLE_DETECTED) || (state == RADIOLIB_LORA_DETECTED)) {
|
||
return true; // Channel is busy
|
||
}
|
||
return false; // Channel is free
|
||
}
|
||
|
||
void LoRaWANNode::processAES(uint8_t* in, size_t len, uint8_t* key, uint8_t* out, uint32_t fcnt, uint8_t dir, uint8_t ctrId, bool counter) {
|
||
// figure out how many encryption blocks are there
|
||
size_t numBlocks = len/RADIOLIB_AES128_BLOCK_SIZE;
|
||
if(len % RADIOLIB_AES128_BLOCK_SIZE) {
|
||
numBlocks++;
|
||
}
|
||
|
||
// generate the encryption blocks
|
||
uint8_t encBuffer[RADIOLIB_AES128_BLOCK_SIZE] = { 0 };
|
||
uint8_t encBlock[RADIOLIB_AES128_BLOCK_SIZE] = { 0 };
|
||
encBlock[RADIOLIB_LORAWAN_BLOCK_MAGIC_POS] = RADIOLIB_LORAWAN_ENC_BLOCK_MAGIC;
|
||
encBlock[RADIOLIB_LORAWAN_ENC_BLOCK_COUNTER_ID_POS] = ctrId;
|
||
encBlock[RADIOLIB_LORAWAN_BLOCK_DIR_POS] = dir;
|
||
LoRaWANNode::hton<uint32_t>(&encBlock[RADIOLIB_LORAWAN_BLOCK_DEV_ADDR_POS], this->devAddr);
|
||
LoRaWANNode::hton<uint32_t>(&encBlock[RADIOLIB_LORAWAN_BLOCK_FCNT_POS], fcnt);
|
||
|
||
// now encrypt the input
|
||
// on downlink frames, this has a decryption effect because server actually "decrypts" the plaintext
|
||
size_t remLen = len;
|
||
for(size_t i = 0; i < numBlocks; i++) {
|
||
|
||
if(counter) {
|
||
encBlock[RADIOLIB_LORAWAN_ENC_BLOCK_COUNTER_POS] = i + 1;
|
||
}
|
||
|
||
// encrypt the buffer
|
||
RadioLibAES128Instance.init(key);
|
||
RadioLibAES128Instance.encryptECB(encBlock, RADIOLIB_AES128_BLOCK_SIZE, encBuffer);
|
||
|
||
// now xor the buffer with the input
|
||
size_t xorLen = remLen;
|
||
if(xorLen > RADIOLIB_AES128_BLOCK_SIZE) {
|
||
xorLen = RADIOLIB_AES128_BLOCK_SIZE;
|
||
}
|
||
for(uint8_t j = 0; j < xorLen; j++) {
|
||
out[i*RADIOLIB_AES128_BLOCK_SIZE + j] = in[i*RADIOLIB_AES128_BLOCK_SIZE + j] ^ encBuffer[j];
|
||
}
|
||
remLen -= xorLen;
|
||
}
|
||
}
|
||
|
||
template<typename T>
|
||
T LoRaWANNode::ntoh(uint8_t* buff, size_t size) {
|
||
uint8_t* buffPtr = buff;
|
||
size_t targetSize = sizeof(T);
|
||
if(size != 0) {
|
||
targetSize = size;
|
||
}
|
||
T res = 0;
|
||
for(size_t i = 0; i < targetSize; i++) {
|
||
res |= (uint32_t)(*(buffPtr++)) << 8*i;
|
||
}
|
||
return(res);
|
||
}
|
||
|
||
template<typename T>
|
||
void LoRaWANNode::hton(uint8_t* buff, T val, size_t size) {
|
||
uint8_t* buffPtr = buff;
|
||
size_t targetSize = sizeof(T);
|
||
if(size != 0) {
|
||
targetSize = size;
|
||
}
|
||
for(size_t i = 0; i < targetSize; i++) {
|
||
*(buffPtr++) = val >> 8*i;
|
||
}
|
||
}
|
||
|
||
#endif
|