175 lines
5.7 KiB
C++
175 lines
5.7 KiB
C++
/*
|
|
RadioLib LoRaWAN End Device Example
|
|
|
|
This example joins a LoRaWAN network and will send
|
|
uplink packets. Before you start, you will have to
|
|
register your device at https://www.thethingsnetwork.org/
|
|
After your device is registered, you can run this example.
|
|
The device will join the network and start uploading data.
|
|
|
|
NOTE: LoRaWAN requires storing some parameters persistently!
|
|
RadioLib does this by using EEPROM, by default
|
|
starting at address 0 and using 32 bytes.
|
|
If you already use EEPROM in your application,
|
|
you will have to either avoid this range, or change it
|
|
by setting a different start address by changing the value of
|
|
RADIOLIB_HAL_PERSISTENT_STORAGE_BASE macro, either
|
|
during build or in src/BuildOpt.h.
|
|
|
|
For default module settings, see the wiki page
|
|
https://github.com/jgromes/RadioLib/wiki/Default-configuration
|
|
|
|
For full API reference, see the GitHub Pages
|
|
https://jgromes.github.io/RadioLib/
|
|
*/
|
|
|
|
// include the library
|
|
#include <RadioLib.h>
|
|
|
|
// SX1278 has the following connections:
|
|
// NSS pin: 10
|
|
// DIO0 pin: 2
|
|
// RESET pin: 9
|
|
// DIO1 pin: 3
|
|
SX1278 radio = new Module(10, 2, 9, 3);
|
|
|
|
// create the node instance on the EU-868 band
|
|
// using the radio module and the encryption key
|
|
// make sure you are using the correct band
|
|
// based on your geographical location!
|
|
LoRaWANNode node(&radio, &EU868);
|
|
|
|
void setup() {
|
|
Serial.begin(9600);
|
|
|
|
// initialize SX1278 with default settings
|
|
Serial.print(F("[SX1278] Initializing ... "));
|
|
int state = radio.begin();
|
|
if(state == RADIOLIB_ERR_NONE) {
|
|
Serial.println(F("success!"));
|
|
} else {
|
|
Serial.print(F("failed, code "));
|
|
Serial.println(state);
|
|
while(true);
|
|
}
|
|
|
|
// first we need to initialize the device storage
|
|
// this will reset all persistently stored parameters
|
|
// NOTE: This should only be done once prior to first joining a network!
|
|
// After wiping persistent storage, you will also have to reset
|
|
// the end device in TTN and perform the join procedure again!
|
|
//node.wipe();
|
|
|
|
// application identifier - pre-LoRaWAN 1.1.0, this was called appEUI
|
|
// when adding new end device in TTN, you will have to enter this number
|
|
// you can pick any number you want, but it has to be unique
|
|
uint64_t joinEUI = 0x12AD1011B0C0FFEE;
|
|
|
|
// device identifier - this number can be anything
|
|
// when adding new end device in TTN, you can generate this number,
|
|
// or you can set any value you want, provided it is also unique
|
|
uint64_t devEUI = 0x70B3D57ED005E120;
|
|
|
|
// select some encryption keys which will be used to secure the communication
|
|
// there are two of them - network key and application key
|
|
// because LoRaWAN uses AES-128, the key MUST be 16 bytes (or characters) long
|
|
|
|
// network key is the ASCII string "topSecretKey1234"
|
|
uint8_t nwkKey[] = { 0x74, 0x6F, 0x70, 0x53, 0x65, 0x63, 0x72, 0x65,
|
|
0x74, 0x4B, 0x65, 0x79, 0x31, 0x32, 0x33, 0x34 };
|
|
|
|
// application key is the ASCII string "aDifferentKeyABC"
|
|
uint8_t appKey[] = { 0x61, 0x44, 0x69, 0x66, 0x66, 0x65, 0x72, 0x65,
|
|
0x6E, 0x74, 0x4B, 0x65, 0x79, 0x41, 0x42, 0x43 };
|
|
|
|
// prior to LoRaWAN 1.1.0, only a single "nwkKey" is used
|
|
// when connecting to LoRaWAN 1.0 network, "appKey" will be disregarded
|
|
// and can be set to NULL
|
|
|
|
// now we can start the activation
|
|
// this can take up to 20 seconds, and requires a LoRaWAN gateway in range
|
|
Serial.print(F("[LoRaWAN] Attempting over-the-air activation ... "));
|
|
state = node.beginOTAA(joinEUI, devEUI, nwkKey, appKey);
|
|
if(state == RADIOLIB_ERR_NONE) {
|
|
Serial.println(F("success!"));
|
|
} else {
|
|
Serial.print(F("failed, code "));
|
|
Serial.println(state);
|
|
while(true);
|
|
}
|
|
|
|
// after the device has been activated,
|
|
// network can be rejoined after device power cycle
|
|
// by calling "begin"
|
|
/*
|
|
Serial.print(F("[LoRaWAN] Resuming previous session ... "));
|
|
state = node.begin();
|
|
if(state == RADIOLIB_ERR_NONE) {
|
|
Serial.println(F("success!"));
|
|
} else {
|
|
Serial.print(F("failed, code "));
|
|
Serial.println(state);
|
|
while(true);
|
|
}
|
|
*/
|
|
}
|
|
|
|
// counter to keep track of transmitted packets
|
|
int count = 0;
|
|
|
|
void loop() {
|
|
// send uplink to port 10
|
|
Serial.print(F("[LoRaWAN] Sending uplink packet ... "));
|
|
String strUp = "Hello World! #" + String(count++);
|
|
int state = node.uplink(strUp, 10);
|
|
if(state == RADIOLIB_ERR_NONE) {
|
|
Serial.println(F("success!"));
|
|
} else {
|
|
Serial.print(F("failed, code "));
|
|
Serial.println(state);
|
|
}
|
|
|
|
// after uplink, you can call downlink(),
|
|
// to receive any possible reply from the server
|
|
// this function must be called within a few seconds
|
|
// after uplink to receive the downlink!
|
|
Serial.print(F("[LoRaWAN] Waiting for downlink ... "));
|
|
String strDown;
|
|
state = node.downlink(strDown);
|
|
if(state == RADIOLIB_ERR_NONE) {
|
|
Serial.println(F("success!"));
|
|
|
|
// print data of the packet (if there are any)
|
|
Serial.print(F("[LoRaWAN] Data:\t\t"));
|
|
if(strDown.length() > 0) {
|
|
Serial.println(strDown);
|
|
} else {
|
|
Serial.println(F("<MAC commands only>"));
|
|
}
|
|
|
|
// print RSSI (Received Signal Strength Indicator)
|
|
Serial.print(F("[LoRaWAN] RSSI:\t\t"));
|
|
Serial.print(radio.getRSSI());
|
|
Serial.println(F(" dBm"));
|
|
|
|
// print SNR (Signal-to-Noise Ratio)
|
|
Serial.print(F("[LoRaWAN] SNR:\t\t"));
|
|
Serial.print(radio.getSNR());
|
|
Serial.println(F(" dB"));
|
|
|
|
// print frequency error
|
|
Serial.print(F("[LoRaWAN] Frequency error:\t"));
|
|
Serial.print(radio.getFrequencyError());
|
|
Serial.println(F(" Hz"));
|
|
|
|
} else if(state == RADIOLIB_ERR_RX_TIMEOUT) {
|
|
Serial.println(F("timeout!"));
|
|
|
|
} else {
|
|
Serial.print(F("failed, code "));
|
|
Serial.println(state);
|
|
}
|
|
|
|
// wait before sending another packet
|
|
delay(10000);
|
|
}
|