RadioLibSmol/src/modules/SX126x.cpp
Bernd Giesecke 8c0a7a2ea3 Moved DIO2 setting into begin()/beginFSK()
Signed-off-by: Bernd Giesecke <bernd@giesecke.tk>
2019-06-04 15:35:24 +08:00

1254 lines
34 KiB
C++

#include "SX126x.h"
SX126x::SX126x(Module* mod) : PhysicalLayer(SX126X_CRYSTAL_FREQ, SX126X_DIV_EXPONENT) {
_mod = mod;
}
int16_t SX126x::begin(float bw, uint8_t sf, uint8_t cr, uint16_t syncWord, uint16_t preambleLength) {
// set module properties
_mod->init(USE_SPI, INT_BOTH);
pinMode(_mod->getRx(), INPUT);
// BW in kHz and SF are required in order to calculate LDRO for setModulationParams
_bwKhz = bw;
_sf = sf;
// initialize configuration variables (will be overwritten during public settings configuration)
_bw = SX126X_LORA_BW_125_0;
_cr = SX126X_LORA_CR_4_7;
_ldro = 0x00;
_crcType = SX126X_LORA_CRC_ON;
_preambleLength = preambleLength;
// set mode to standby
int16_t state = standby();
if(state != ERR_NONE) {
return(state);
}
// configure settings not accessible by API
state = config(SX126X_PACKET_TYPE_LORA);
if(state != ERR_NONE) {
return(state);
}
// configure publicly accessible settings
state = setDio2AsRfSwitch(false);
if(state != ERR_NONE) {
return(state);
}
state = setSpreadingFactor(sf);
if(state != ERR_NONE) {
return(state);
}
state = setBandwidth(bw);
if(state != ERR_NONE) {
return(state);
}
state = setCodingRate(cr);
if(state != ERR_NONE) {
return(state);
}
state = setSyncWord(syncWord);
if(state != ERR_NONE) {
return(state);
}
state = setPreambleLength(preambleLength);
return(state);
}
int16_t SX126x::beginFSK(float br, float freqDev, float rxBw, uint16_t preambleLength, float dataShaping) {
// set module properties
_mod->init(USE_SPI, INT_BOTH);
pinMode(_mod->getRx(), INPUT);
// initialize configuration variables (will be overwritten during public settings configuration)
_br = 21333; // 48.0 kbps
_freqDev = 52428; // 50.0 kHz
_rxBw = SX126X_GFSK_RX_BW_156_2;
_rxBwKhz = 156.2;
_pulseShape = SX126X_GFSK_FILTER_GAUSS_0_5;
_crcTypeFSK = SX126X_GFSK_CRC_2_BYTE_INV; // CCIT CRC configuration
_preambleLengthFSK = preambleLength;
_addrComp = SX126X_GFSK_ADDRESS_FILT_OFF;
// set mode to standby
int16_t state = standby();
if(state != ERR_NONE) {
return(state);
}
// configure settings not accessible by API
state = config(SX126X_PACKET_TYPE_GFSK);
if(state != ERR_NONE) {
return(state);
}
// configure publicly accessible settings
state = setDio2AsRfSwitch(false);
if(state != ERR_NONE) {
return(state);
}
state = setBitRate(br);
if(state != ERR_NONE) {
return(state);
}
state = setFrequencyDeviation(freqDev);
if(state != ERR_NONE) {
return(state);
}
state = setRxBandwidth(rxBw);
if(state != ERR_NONE) {
return(state);
}
state = setDataShaping(dataShaping);
if(state != ERR_NONE) {
return(state);
}
state = setPreambleLength(preambleLength);
if(state != ERR_NONE) {
return(state);
}
// set default sync word 0x2D01 - not a beginFSK attribute
uint8_t sync[] = {0x2D, 0x01};
state = setSyncWord(sync, 2);
return(state);
}
int16_t SX126x::transmit(uint8_t* data, size_t len, uint8_t addr) {
// set mode to standby
int16_t state = standby();
if(state != ERR_NONE) {
return(state);
}
// check packet length
if(len >= 256) {
return(ERR_PACKET_TOO_LONG);
}
uint32_t timeout = 0;
// get currently active modem
uint8_t modem = getPacketType();
if(modem == SX126X_PACKET_TYPE_LORA) {
// calculate timeout (150% of expected time-on-air)
float symbolLength = (float)((uint32_t)(1) << _sf) / (float)_bwKhz;
float sfCoeff1 = 4.25;
float sfCoeff2 = 8.0;
if(_sf == 5 || _sf == 6) {
sfCoeff1 = 6.25;
sfCoeff2 = 0.0;
}
uint8_t sfDivisor = 4*_sf;
if(symbolLength >= 16.0) {
sfDivisor = 4*(_sf - 2);
}
float nSymbol = _preambleLength + sfCoeff1 + 8 + ceil(max(8.0 * len + (_crcType * 16.0) - 4.0 * _sf + sfCoeff2 + 20.0, 0.0) / sfDivisor) * (_cr + 4);
timeout = (uint32_t)(symbolLength * nSymbol * 1500.0);
} else if(modem == SX126X_PACKET_TYPE_GFSK) {
// calculate timeout (500% of expected time-on-air)
float brBps = ((float)(SX126X_CRYSTAL_FREQ) * 1000000.0 * 32.0) / (float)_br;
timeout = (uint32_t)(((len * 8.0) / brBps) * 1000000.0 * 5.0);
} else {
return(ERR_UNKNOWN);
}
DEBUG_PRINT(F("Timeout in "));
DEBUG_PRINT(timeout);
DEBUG_PRINTLN(F(" us"));
// start transmission
state = startTransmit(data, len, addr);
if(state != ERR_NONE) {
return(state);
}
// wait for packet transmission or timeout
uint32_t start = micros();
while(!digitalRead(_mod->getInt0())) {
if(micros() - start > timeout) {
clearIrqStatus();
return(ERR_TX_TIMEOUT);
}
}
uint32_t elapsed = micros() - start;
// update data rate
_dataRate = (len*8.0)/((float)elapsed/1000000.0);
// clear interrupt flags
state = clearIrqStatus();
if(state != ERR_NONE) {
return(state);
}
// set mode to standby to disable transmitter
state = standby();
return(state);
}
int16_t SX126x::receive(uint8_t* data, size_t len) {
// set mode to standby
int16_t state = standby();
if(state != ERR_NONE) {
return(state);
}
uint32_t timeout = 0;
// get currently active modem
uint8_t modem = getPacketType();
if(modem == SX126X_PACKET_TYPE_LORA) {
// calculate timeout (100 LoRa symbols, the default for SX127x series)
float symbolLength = (float)(uint32_t(1) << _sf) / (float)_bwKhz;
timeout = (uint32_t)(symbolLength * 100.0 * 1000.0);
} else if(modem == SX126X_PACKET_TYPE_GFSK) {
// calculate timeout (500 % of expected time-one-air)
size_t maxLen = len;
if(len == 0) {
maxLen = 0xFF;
}
float brBps = ((float)(SX126X_CRYSTAL_FREQ) * 1000000.0 * 32.0) / (float)_br;
timeout = (uint32_t)(((maxLen * 8.0) / brBps) * 1000000.0 * 5.0);
} else {
return(ERR_UNKNOWN);
}
DEBUG_PRINT(F("Timeout in "));
DEBUG_PRINT(timeout);
DEBUG_PRINTLN(F(" us"));
// start reception
uint32_t timeoutValue = (uint32_t)((float)timeout / 15.625);
state = startReceive(timeoutValue);
if(state != ERR_NONE) {
return(state);
}
// wait for packet reception or timeout
uint32_t start = micros();
while(!digitalRead(_mod->getInt0())) {
if(micros() - start > timeout) {
clearIrqStatus();
return(ERR_RX_TIMEOUT);
}
}
// read the received data
return(readData(data, len));
}
int16_t SX126x::transmitDirect(uint32_t frf) {
// user requested to start transmitting immediately (required for RTTY)
int16_t state = ERR_NONE;
if(frf != 0) {
state = setRfFrequency(frf);
}
if(state != ERR_NONE) {
return(state);
}
// start transmitting
uint8_t data[] = {SX126X_CMD_NOP};
return(SPIwriteCommand(SX126X_CMD_SET_TX_CONTINUOUS_WAVE, data, 1));
}
int16_t SX126x::receiveDirect() {
// SX126x is unable to ouput received data directly
return(ERR_UNKNOWN);
}
int16_t SX126x::scanChannel() {
// check active modem
if(getPacketType() != SX126X_PACKET_TYPE_LORA) {
return(ERR_WRONG_MODEM);
}
if (_dio2RfSwitch) {
// If DIO2 is used as RF switch this function does not work
return(ERR_DIO2_UNAVAIL_CAD_FAILED);
}
// set mode to standby
int16_t state = standby();
if(state != ERR_NONE) {
return(state);
}
// set DIO pin mapping
state = setDioIrqParams(SX126X_IRQ_CAD_DETECTED | SX126X_IRQ_CAD_DONE, SX126X_IRQ_CAD_DONE, SX126X_IRQ_CAD_DETECTED);
if(state != ERR_NONE) {
return(state);
}
// clear interrupt flags
state = clearIrqStatus();
if(state != ERR_NONE) {
return(state);
}
// set mode to CAD
state = setCad();
if(state != ERR_NONE) {
return(state);
}
// wait for channel activity detected or timeout
while(!digitalRead(_mod->getInt0())) {
if(digitalRead(_mod->getInt1())) {
clearIrqStatus();
return(LORA_DETECTED);
}
}
// clear interrupt flags
clearIrqStatus();
return(CHANNEL_FREE);
}
int16_t SX126x::sleep() {
uint8_t data[] = {SX126X_SLEEP_START_COLD | SX126X_SLEEP_RTC_OFF};
int16_t state = SPIwriteCommand(SX126X_CMD_SET_SLEEP, data, 1);
// wait for SX126x to safely enter sleep mode
delayMicroseconds(500);
return(state);
}
int16_t SX126x::standby() {
return(SX126x::standby(SX126X_STANDBY_RC));
}
int16_t SX126x::standby(uint8_t mode) {
uint8_t data[] = {mode};
return(SPIwriteCommand(SX126X_CMD_SET_STANDBY, data, 1));
}
void SX126x::setDio1Action(void (*func)(void)) {
attachInterrupt(digitalPinToInterrupt(_mod->getInt0()), func, RISING);
}
void SX126x::setDio2Action(void (*func)(void)) {
attachInterrupt(digitalPinToInterrupt(_mod->getInt1()), func, RISING);
}
int16_t SX126x::startTransmit(uint8_t* data, size_t len, uint8_t addr) {
// suppress unused variable warning
(void)addr;
// check packet length
if(len >= 256) {
return(ERR_PACKET_TOO_LONG);
}
// set packet Length
int16_t state = ERR_NONE;
uint8_t modem = getPacketType();
if(modem == SX126X_PACKET_TYPE_LORA) {
state = setPacketParams(_preambleLength, _crcType, len);
} else if(modem == SX126X_PACKET_TYPE_GFSK) {
state = setPacketParamsFSK(_preambleLengthFSK, _crcTypeFSK, _syncWordLength, _addrComp, len);
} else {
return(ERR_UNKNOWN);
}
if(state != ERR_NONE) {
return(state);
}
// set DIO mapping
state = setDioIrqParams(SX126X_IRQ_TX_DONE | SX126X_IRQ_TIMEOUT, SX126X_IRQ_TX_DONE);
if(state != ERR_NONE) {
return(state);
}
// set buffer pointers
state = setBufferBaseAddress();
if(state != ERR_NONE) {
return(state);
}
// write packet to buffer
state = writeBuffer(data, len);
if(state != ERR_NONE) {
return(state);
}
// clear interrupt flags
state = clearIrqStatus();
if(state != ERR_NONE) {
return(state);
}
// start transmission
state = setTx(SX126X_TX_TIMEOUT_NONE);
if(state != ERR_NONE) {
return(state);
}
// wait for BUSY to go low (= PA ramp up done)
while(digitalRead(_mod->getRx()));
return(state);
}
int16_t SX126x::startReceive(uint32_t timeout) {
// set DIO mapping
int16_t state = setDioIrqParams(SX126X_IRQ_RX_DONE | SX126X_IRQ_TIMEOUT, SX126X_IRQ_RX_DONE);
if(state != ERR_NONE) {
return(state);
}
// set buffer pointers
state = setBufferBaseAddress();
if(state != ERR_NONE) {
return(state);
}
// clear interrupt flags
state = clearIrqStatus();
if(state != ERR_NONE) {
return(state);
}
// set mode to receive
state = setRx(timeout);
return(state);
}
int16_t SX126x::readData(uint8_t* data, size_t len) {
// check integrity CRC
uint16_t irq = getIrqStatus();
if((irq & SX126X_IRQ_CRC_ERR) || (irq & SX126X_IRQ_HEADER_ERR)) {
clearIrqStatus();
return(ERR_CRC_MISMATCH);
}
// get packet length
uint8_t rxBufStatus[2];
int16_t state = SPIreadCommand(SX126X_CMD_GET_RX_BUFFER_STATUS, rxBufStatus, 2);
if(state != ERR_NONE) {
return(state);
}
size_t length = rxBufStatus[0];
// read packet data
if(len == 0) {
// argument 'len' equal to zero indicates String call, which means dynamically allocated data array
// dispose of the original and create a new one
delete[] data;
data = new uint8_t[length + 1];
}
state = readBuffer(data, length);
if(state != ERR_NONE) {
return(state);
}
// add terminating null
data[length] = 0;
// clear interrupt flags
state = clearIrqStatus();
return(state);
}
int16_t SX126x::setBandwidth(float bw) {
// check active modem
if(getPacketType() != SX126X_PACKET_TYPE_LORA) {
return(ERR_WRONG_MODEM);
}
// check alowed bandwidth values
if(abs(bw - 7.8) <= 0.001) {
_bw = SX126X_LORA_BW_7_8;
} else if(abs(bw - 10.4) <= 0.001) {
_bw = SX126X_LORA_BW_10_4;
} else if(abs(bw - 15.6) <= 0.001) {
_bw = SX126X_LORA_BW_15_6;
} else if(abs(bw - 20.8) <= 0.001) {
_bw = SX126X_LORA_BW_20_8;
} else if(abs(bw - 31.25) <= 0.001) {
_bw = SX126X_LORA_BW_31_25;
} else if(abs(bw - 41.7) <= 0.001) {
_bw = SX126X_LORA_BW_41_7;
} else if(abs(bw - 62.5) <= 0.001) {
_bw = SX126X_LORA_BW_62_5;
} else if(abs(bw - 125.0) <= 0.001) {
_bw = SX126X_LORA_BW_125_0;
} else if(abs(bw - 250.0) <= 0.001) {
_bw = SX126X_LORA_BW_250_0;
} else if(abs(bw - 500.0) <= 0.001) {
_bw = SX126X_LORA_BW_500_0;
} else {
return(ERR_INVALID_BANDWIDTH);
}
// update modulation parameters
_bwKhz = bw;
return(setModulationParams(_sf, _bw, _cr));
}
int16_t SX126x::setSpreadingFactor(uint8_t sf) {
// check active modem
if(getPacketType() != SX126X_PACKET_TYPE_LORA) {
return(ERR_WRONG_MODEM);
}
// check allowed spreading factor values
if(!((sf >= 5) && (sf <= 12))) {
return(ERR_INVALID_SPREADING_FACTOR);
}
// update modulation parameters
_sf = sf;
return(setModulationParams(_sf, _bw, _cr));
}
int16_t SX126x::setCodingRate(uint8_t cr) {
// check active modem
if(getPacketType() != SX126X_PACKET_TYPE_LORA) {
return(ERR_WRONG_MODEM);
}
// check allowed spreading factor values
if(!((cr >= 5) && (cr <= 8))) {
return(ERR_INVALID_CODING_RATE);
}
// update modulation parameters
_cr = cr - 4;
return(setModulationParams(_sf, _bw, _cr));
}
int16_t SX126x::setSyncWord(uint16_t syncWord) {
// check active modem
if(getPacketType() != SX126X_PACKET_TYPE_LORA) {
return(ERR_WRONG_MODEM);
}
// update register
uint8_t data[2] = {(uint8_t)((syncWord >> 8) & 0xFF), (uint8_t)(syncWord & 0xFF)};
return(writeRegister(SX126X_REG_LORA_SYNC_WORD_MSB, data, 2));
}
int16_t SX126x::setCurrentLimit(float currentLimit) {
// calculate raw value
uint8_t rawLimit = (uint8_t)(currentLimit / 2.5);
// update register
return(writeRegister(SX126X_REG_OCP_CONFIGURATION, &rawLimit, 1));
}
int16_t SX126x::setPreambleLength(uint16_t preambleLength) {
uint8_t modem = getPacketType();
if(modem == SX126X_PACKET_TYPE_LORA) {
_preambleLength = preambleLength;
return(setPacketParams(_preambleLength, _crcType));
} else if(modem == SX126X_PACKET_TYPE_GFSK) {
_preambleLengthFSK = preambleLength;
return(setPacketParamsFSK(_preambleLengthFSK, _crcTypeFSK, _syncWordLength, _addrComp));
}
return(ERR_UNKNOWN);
}
int16_t SX126x::setFrequencyDeviation(float freqDev) {
// check active modem
if(getPacketType() != SX126X_PACKET_TYPE_GFSK) {
return(ERR_WRONG_MODEM);
}
// check alowed frequency deviation values
if(!(freqDev <= 200.0)) {
return(ERR_INVALID_FREQUENCY_DEVIATION);
}
// calculate raw frequency deviation value
uint32_t freqDevRaw = (uint32_t)(((freqDev * 1000.0) * (float)((uint32_t)(1) << 25)) / (SX126X_CRYSTAL_FREQ * 1000000.0));
// check modulation parameters
/*if(2 * freqDevRaw + _br > _rxBwKhz * 1000.0) {
return(ERR_INVALID_MODULATION_PARAMETERS);
}*/
_freqDev = freqDevRaw;
// update modulation parameters
return(setModulationParamsFSK(_br, _pulseShape, _rxBw, _freqDev));
}
int16_t SX126x::setBitRate(float br) {
// check active modem
if(getPacketType() != SX126X_PACKET_TYPE_GFSK) {
return(ERR_WRONG_MODEM);
}
// check alowed bit rate values
if(!((br >= 0.6) && (br <= 300.0))) {
return(ERR_INVALID_BIT_RATE);
}
// calculate raw bit rate value
uint32_t brRaw = (uint32_t)((SX126X_CRYSTAL_FREQ * 1000000.0 * 32.0) / (br * 1000.0));
// check modulation parameters
/*if(2 * _freqDev + brRaw > _rxBwKhz * 1000.0) {
return(ERR_INVALID_MODULATION_PARAMETERS);
}*/
_br = brRaw;
// update modulation parameters
return(setModulationParamsFSK(_br, _pulseShape, _rxBw, _freqDev));
}
int16_t SX126x::setRxBandwidth(float rxBw) {
// check active modem
if(getPacketType() != SX126X_PACKET_TYPE_GFSK) {
return(ERR_WRONG_MODEM);
}
// check modulation parameters
/*if(2 * _freqDev + _br > rxBw * 1000.0) {
return(ERR_INVALID_MODULATION_PARAMETERS);
}*/
_rxBwKhz = rxBw;
// check alowed receiver bandwidth values
if(abs(rxBw - 4.8) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_4_8;
} else if(abs(rxBw - 5.8) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_5_8;
} else if(abs(rxBw - 7.3) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_7_3;
} else if(abs(rxBw - 9.7) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_9_7;
} else if(abs(rxBw - 11.7) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_11_7;
} else if(abs(rxBw - 14.6) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_14_6;
} else if(abs(rxBw - 19.5) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_19_5;
} else if(abs(rxBw - 23.4) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_23_4;
} else if(abs(rxBw - 29.3) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_29_3;
} else if(abs(rxBw - 39.0) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_39_0;
} else if(abs(rxBw - 46.9) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_46_9;
} else if(abs(rxBw - 58.6) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_58_6;
} else if(abs(rxBw - 78.2) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_78_2;
} else if(abs(rxBw - 93.8) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_93_8;
} else if(abs(rxBw - 117.3) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_117_3;
} else if(abs(rxBw - 156.2) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_156_2;
} else if(abs(rxBw - 187.2) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_187_2;
} else if(abs(rxBw - 234.3) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_234_3;
} else if(abs(rxBw - 312.0) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_312_0;
} else if(abs(rxBw - 373.6) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_373_6;
} else if(abs(rxBw - 467.0) <= 0.001) {
_rxBw = SX126X_GFSK_RX_BW_467_0;
} else {
return(ERR_INVALID_RX_BANDWIDTH);
}
// update modulation parameters
return(setModulationParamsFSK(_br, _pulseShape, _rxBw, _freqDev));
}
int16_t SX126x::setDataShaping(float sh) {
// check active modem
if(getPacketType() != SX126X_PACKET_TYPE_GFSK) {
return(ERR_WRONG_MODEM);
}
// check allowed values
sh *= 10.0;
if(abs(sh - 0.0) <= 0.001) {
_pulseShape = SX126X_GFSK_FILTER_NONE;
} else if(abs(sh - 3.0) <= 0.001) {
_pulseShape = SX126X_GFSK_FILTER_GAUSS_0_3;
} else if(abs(sh - 5.0) <= 0.001) {
_pulseShape = SX126X_GFSK_FILTER_GAUSS_0_5;
} else if(abs(sh - 7.0) <= 0.001) {
_pulseShape = SX126X_GFSK_FILTER_GAUSS_0_7;
} else if(abs(sh - 10.0) <= 0.001) {
_pulseShape = SX126X_GFSK_FILTER_GAUSS_1;
} else {
return(ERR_INVALID_DATA_SHAPING);
}
// update modulation parameters
return(setModulationParamsFSK(_br, _pulseShape, _rxBw, _freqDev));
}
int16_t SX126x::setSyncWord(uint8_t* syncWord, uint8_t len) {
// check active modem
if(getPacketType() != SX126X_PACKET_TYPE_GFSK) {
return(ERR_WRONG_MODEM);
}
// check sync word Length
if(len > 8) {
return(ERR_INVALID_SYNC_WORD);
}
// write sync word
int16_t state = writeRegister(SX126X_REG_SYNC_WORD_0, syncWord, len);
if(state != ERR_NONE) {
return(state);
}
// update packet parameters
_syncWordLength = len * 8;
state = setPacketParamsFSK(_preambleLengthFSK, _crcTypeFSK, _syncWordLength, _addrComp);
return(state);
}
int16_t SX126x::setNodeAddress(uint8_t nodeAddr) {
// check active modem
if(getPacketType() != SX126X_PACKET_TYPE_GFSK) {
return(ERR_WRONG_MODEM);
}
// enable address filtering (node only)
_addrComp = SX126X_GFSK_ADDRESS_FILT_NODE;
int16_t state = setPacketParamsFSK(_preambleLengthFSK, _crcTypeFSK, _syncWordLength, _addrComp);
if(state != ERR_NONE) {
return(state);
}
// set node address
state = writeRegister(SX126X_REG_NODE_ADDRESS, &nodeAddr, 1);
return(state);
}
int16_t SX126x::setBroadcastAddress(uint8_t broadAddr) {
// check active modem
if(getPacketType() != SX126X_PACKET_TYPE_GFSK) {
return(ERR_WRONG_MODEM);
}
// enable address filtering (node and broadcast)
_addrComp = SX126X_GFSK_ADDRESS_FILT_NODE_BROADCAST;
int16_t state = setPacketParamsFSK(_preambleLengthFSK, _crcTypeFSK, _syncWordLength, _addrComp);
if(state != ERR_NONE) {
return(state);
}
// set broadcast address
state = writeRegister(SX126X_REG_BROADCAST_ADDRESS, &broadAddr, 1);
return(state);
}
int16_t SX126x::disableAddressFiltering() {
// check active modem
if(getPacketType() != SX126X_PACKET_TYPE_GFSK) {
return(ERR_WRONG_MODEM);
}
// disable address filtering
_addrComp = SX126X_GFSK_ADDRESS_FILT_OFF;
return(setPacketParamsFSK(_preambleLengthFSK, _crcTypeFSK, _syncWordLength, _addrComp));
}
int16_t SX126x::setCRC(bool enableCRC) {
// check active modem
if(getPacketType() != SX126X_PACKET_TYPE_LORA) {
return(ERR_WRONG_MODEM);
}
// update packet parameters
if(enableCRC) {
_crcType = SX126X_LORA_CRC_ON;
} else {
_crcType = SX126X_LORA_CRC_OFF;
}
return(setPacketParams(_preambleLength, _crcType));
}
int16_t SX126x::setCRC(uint8_t len, uint16_t initial, uint16_t polynomial, bool inverted) {
// check active modem
if(getPacketType() != SX126X_PACKET_TYPE_GFSK) {
return(ERR_WRONG_MODEM);
}
// update packet parameters
switch(len) {
case 0:
_crcTypeFSK = SX126X_GFSK_CRC_OFF;
break;
case 1:
if(inverted) {
_crcTypeFSK = SX126X_GFSK_CRC_1_BYTE_INV;
} else {
_crcTypeFSK = SX126X_GFSK_CRC_1_BYTE;
}
break;
case 2:
if(inverted) {
_crcTypeFSK = SX126X_GFSK_CRC_2_BYTE_INV;
} else {
_crcTypeFSK = SX126X_GFSK_CRC_2_BYTE;
}
break;
default:
return(ERR_INVALID_CRC_CONFIGURATION);
}
int16_t state = setPacketParamsFSK(_preambleLengthFSK, _crcTypeFSK, _syncWordLength, _addrComp);
if(state != ERR_NONE) {
return(state);
}
// write initial CRC value
uint8_t data[2] = {(uint8_t)((initial >> 8) & 0xFF), (uint8_t)(initial & 0xFF)};
state = writeRegister(SX126X_REG_CRC_INITIAL_MSB, data, 2);
if(state != ERR_NONE) {
return(state);
}
// write CRC polynomial value
data[0] = (uint8_t)((polynomial >> 8) & 0xFF);
data[1] = (uint8_t)(polynomial & 0xFF);
state = writeRegister(SX126X_REG_CRC_POLYNOMIAL_MSB, data, 2);
return(state);
}
float SX126x::getDataRate() {
return(_dataRate);
}
float SX126x::getRSSI() {
// get last packet RSSI from packet status
uint32_t packetStatus = getPacketStatus();
uint8_t rssiPkt = packetStatus & 0xFF;
return(-1.0 * rssiPkt/2.0);
}
float SX126x::getSNR() {
// check active modem
if(getPacketType() != SX126X_PACKET_TYPE_LORA) {
return(ERR_WRONG_MODEM);
}
// get last packet SNR from packet status
uint32_t packetStatus = getPacketStatus();
uint8_t snrPkt = (packetStatus >> 8) & 0xFF;
return(snrPkt/4.0);
}
int16_t SX126x::setTCXO(float voltage, uint32_t timeout) {
// set mode to standby
standby();
// check alowed voltage values
uint8_t data[4];
if(abs(voltage - 1.6) <= 0.001) {
data[0] = SX126X_DIO3_OUTPUT_1_6;
} else if(abs(voltage - 1.7) <= 0.001) {
data[0] = SX126X_DIO3_OUTPUT_1_7;
} else if(abs(voltage - 1.8) <= 0.001) {
data[0] = SX126X_DIO3_OUTPUT_1_8;
} else if(abs(voltage - 2.2) <= 0.001) {
data[0] = SX126X_DIO3_OUTPUT_2_2;
} else if(abs(voltage - 2.4) <= 0.001) {
data[0] = SX126X_DIO3_OUTPUT_2_4;
} else if(abs(voltage - 2.7) <= 0.001) {
data[0] = SX126X_DIO3_OUTPUT_2_7;
} else if(abs(voltage - 3.0) <= 0.001) {
data[0] = SX126X_DIO3_OUTPUT_3_0;
} else if(abs(voltage - 3.3) <= 0.001) {
data[0] = SX126X_DIO3_OUTPUT_3_3;
} else {
return(ERR_INVALID_TCXO_VOLTAGE);
}
// calculate timeout
uint32_t timeoutValue = (float)timeout / 15.625;
data[1] = (uint8_t)((timeoutValue >> 16) & 0xFF);
data[2] = (uint8_t)((timeoutValue >> 8) & 0xFF);
data[3] = (uint8_t)(timeoutValue & 0xFF);
// enable TCXO control on DIO3
SPIwriteCommand(SX126X_CMD_SET_DIO3_AS_TCXO_CTRL, data, 4);
return(ERR_NONE);
}
int16_t SX126x::setTx(uint32_t timeout) {
uint8_t data[3] = {(uint8_t)((timeout >> 16) & 0xFF), (uint8_t)((timeout >> 8) & 0xFF), (uint8_t)(timeout & 0xFF)};
return(SPIwriteCommand(SX126X_CMD_SET_TX, data, 3));
}
int16_t SX126x::setRx(uint32_t timeout) {
uint8_t data[3] = {(uint8_t)((timeout >> 16) & 0xFF), (uint8_t)((timeout >> 8) & 0xFF), (uint8_t)(timeout & 0xFF)};
return(SPIwriteCommand(SX126X_CMD_SET_RX, data, 3));
}
int16_t SX126x::setCad() {
return(SPIwriteCommand(SX126X_CMD_SET_CAD, NULL, 0));
}
int16_t SX126x::setPaConfig(uint8_t paDutyCycle, uint8_t deviceSel, uint8_t hpMax, uint8_t paLut) {
uint8_t data[4] = {paDutyCycle, hpMax, deviceSel, paLut};
return(SPIwriteCommand(SX126X_CMD_SET_PA_CONFIG, data, 4));
}
int16_t SX126x::writeRegister(uint16_t addr, uint8_t* data, uint8_t numBytes) {
uint8_t* dat = new uint8_t[2 + numBytes];
dat[0] = (uint8_t)((addr >> 8) & 0xFF);
dat[1] = (uint8_t)(addr & 0xFF);
memcpy(dat + 2, data, numBytes);
int16_t state = SPIwriteCommand(SX126X_CMD_WRITE_REGISTER, dat, 2 + numBytes);
delete[] dat;
return(state);
}
int16_t SX126x::writeBuffer(uint8_t* data, uint8_t numBytes, uint8_t offset) {
uint8_t* dat = new uint8_t[1 + numBytes];
dat[0] = offset;
memcpy(dat + 1, data, numBytes);
int16_t state = SPIwriteCommand(SX126X_CMD_WRITE_BUFFER, dat, 1 + numBytes);
delete[] dat;
return(state);
}
int16_t SX126x::readBuffer(uint8_t* data, uint8_t numBytes) {
// offset will be always set to 0 (one extra NOP is sent)
uint8_t* dat = new uint8_t[1 + numBytes];
dat[0] = SX126X_CMD_NOP;
memcpy(dat + 1, data, numBytes);
int16_t state = SPIreadCommand(SX126X_CMD_READ_BUFFER, dat, 1 + numBytes);
memcpy(data, dat + 1, numBytes);
delete[] dat;
return(state);
}
int16_t SX126x::setDioIrqParams(uint16_t irqMask, uint16_t dio1Mask, uint16_t dio2Mask, uint16_t dio3Mask) {
uint8_t data[8] = {(uint8_t)((irqMask >> 8) & 0xFF), (uint8_t)(irqMask & 0xFF),
(uint8_t)((dio1Mask >> 8) & 0xFF), (uint8_t)(dio1Mask & 0xFF),
(uint8_t)((dio2Mask >> 8) & 0xFF), (uint8_t)(dio2Mask & 0xFF),
(uint8_t)((dio3Mask >> 8) & 0xFF), (uint8_t)(dio3Mask & 0xFF)};
return(SPIwriteCommand(SX126X_CMD_SET_DIO_IRQ_PARAMS, data, 8));
}
uint16_t SX126x::getIrqStatus() {
uint8_t data[2];
SPIreadCommand(SX126X_CMD_GET_IRQ_STATUS, data, 2);
return(((uint16_t)(data[1]) << 8) | data[0]);
}
int16_t SX126x::clearIrqStatus(uint16_t clearIrqParams) {
uint8_t data[2] = {(uint8_t)((clearIrqParams >> 8) & 0xFF), (uint8_t)(clearIrqParams & 0xFF)};
return(SPIwriteCommand(SX126X_CMD_CLEAR_IRQ_STATUS, data, 2));
}
int16_t SX126x::setRfFrequency(uint32_t frf) {
uint8_t data[4] = {(uint8_t)((frf >> 24) & 0xFF), (uint8_t)((frf >> 16) & 0xFF), (uint8_t)((frf >> 8) & 0xFF), (uint8_t)(frf & 0xFF)};
return(SPIwriteCommand(SX126X_CMD_SET_RF_FREQUENCY, data, 4));
}
int16_t SX126x::calibrateImage(uint8_t* data) {
return(SPIwriteCommand(SX126X_CMD_CALIBRATE_IMAGE, data, 2));
}
uint8_t SX126x::getPacketType() {
uint8_t data = 0xFF;
SPIreadCommand(SX126X_CMD_GET_PACKET_TYPE, &data, 1);
return(data);
}
int16_t SX126x::setTxParams(uint8_t power, uint8_t rampTime) {
uint8_t data[2] = {power, rampTime};
return(SPIwriteCommand(SX126X_CMD_SET_TX_PARAMS, data, 2));
}
int16_t SX126x::setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr, uint8_t ldro) {
// calculate symbol length and enable low data rate optimization, if needed
if(ldro == 0xFF) {
float symbolLength = (float)(uint32_t(1) << _sf) / (float)_bwKhz;
DEBUG_PRINT("Symbol length: ");
DEBUG_PRINT(symbolLength);
DEBUG_PRINTLN(" ms");
if(symbolLength >= 16.0) {
_ldro = SX126X_LORA_LOW_DATA_RATE_OPTIMIZE_ON;
} else {
_ldro = SX126X_LORA_LOW_DATA_RATE_OPTIMIZE_OFF;
}
} else {
_ldro = ldro;
}
uint8_t data[4] = {sf, bw, cr, _ldro};
return(SPIwriteCommand(SX126X_CMD_SET_MODULATION_PARAMS, data, 4));
}
int16_t SX126x::setModulationParamsFSK(uint32_t br, uint8_t pulseShape, uint8_t rxBw, uint32_t freqDev) {
uint8_t data[8] = {(uint8_t)((br >> 16) & 0xFF), (uint8_t)((br >> 8) & 0xFF), (uint8_t)(br & 0xFF),
pulseShape, rxBw,
(uint8_t)((freqDev >> 16) & 0xFF), (uint8_t)((freqDev >> 8) & 0xFF), (uint8_t)(freqDev & 0xFF)};
return(SPIwriteCommand(SX126X_CMD_SET_MODULATION_PARAMS, data, 8));
}
int16_t SX126x::setPacketParams(uint16_t preambleLength, uint8_t crcType, uint8_t payloadLength, uint8_t headerType, uint8_t invertIQ) {
uint8_t data[6] = {(uint8_t)((preambleLength >> 8) & 0xFF), (uint8_t)(preambleLength & 0xFF), headerType, payloadLength, crcType, invertIQ};
return(SPIwriteCommand(SX126X_CMD_SET_PACKET_PARAMS, data, 6));
}
int16_t SX126x::setPacketParamsFSK(uint16_t preambleLength, uint8_t crcType, uint8_t syncWordLength, uint8_t addrComp, uint8_t payloadLength, uint8_t packetType, uint8_t preambleDetectorLength, uint8_t whitening) {
uint8_t data[9] = {(uint8_t)((preambleLength >> 8) & 0xFF), (uint8_t)(preambleLength & 0xFF),
preambleDetectorLength, syncWordLength, addrComp,
packetType, payloadLength, crcType, whitening};
return(SPIwriteCommand(SX126X_CMD_SET_PACKET_PARAMS, data, 9));
}
int16_t SX126x::setBufferBaseAddress(uint8_t txBaseAddress, uint8_t rxBaseAddress) {
uint8_t data[2] = {txBaseAddress, rxBaseAddress};
return(SPIwriteCommand(SX126X_CMD_SET_BUFFER_BASE_ADDRESS, data, 2));
}
uint8_t SX126x::getStatus() {
uint8_t data[1];
SPIreadCommand(SX126X_CMD_GET_STATUS, data, 1);
return(data[0]);
}
uint32_t SX126x::getPacketStatus() {
uint8_t data[3];
SPIreadCommand(SX126X_CMD_GET_PACKET_STATUS, data, 3);
return((((uint32_t)data[0]) << 16) | (((uint32_t)data[1]) << 8) | (uint32_t)data[2]);
}
uint16_t SX126x::getDeviceErrors() {
uint8_t data[2];
SPIreadCommand(SX126X_CMD_GET_DEVICE_ERRORS, data, 2);
uint16_t opError = (((uint16_t)data[0] & 0xFF) << 8) & ((uint16_t)data[1]);
return(opError);
}
int16_t SX126x::clearDeviceErrors() {
uint8_t data[1] = {SX126X_CMD_NOP};
return(SPIwriteCommand(SX126X_CMD_CLEAR_DEVICE_ERRORS, data, 1));
}
int16_t SX126x::setFrequencyRaw(float freq) {
// calculate raw value
uint32_t frf = (freq * (uint32_t(1) << SX126X_DIV_EXPONENT)) / SX126X_CRYSTAL_FREQ;
setRfFrequency(frf);
return(ERR_NONE);
}
int16_t SX126x::setDio2AsRfSwitch(bool enable) {
uint8_t data[1];
if (enable) {
// set DIO2 as RF switch
data[0] = SX126X_DIO2_AS_RF_SWITCH;
} else {
data[0] = SX126X_DIO2_AS_IRQ;
}
int16_t state = SPIwriteCommand(SX126X_CMD_SET_DIO2_AS_RF_SWITCH_CTRL, data, 1);
if (state == ERR_NONE) {
_dio2RfSwitch = true;
}
return(state);
}
int16_t SX126x::config(uint8_t modem) {
// set regulator mode
uint8_t* data = new uint8_t[1];
data[0] = SX126X_REGULATOR_DC_DC;
int16_t state = SPIwriteCommand(SX126X_CMD_SET_REGULATOR_MODE, data, 1);
if(state != ERR_NONE) {
return(state);
}
// reset buffer base address
state = setBufferBaseAddress();
if(state != ERR_NONE) {
return(state);
}
// set modem
data[0] = modem;
state = SPIwriteCommand(SX126X_CMD_SET_PACKET_TYPE, data, 1);
if(state != ERR_NONE) {
return(state);
}
// set Rx/Tx fallback mode to STDBY_RC
data[0] = SX126X_RX_TX_FALLBACK_MODE_STDBY_RC;
state = SPIwriteCommand(SX126X_CMD_SET_RX_TX_FALLBACK_MODE, data, 1);
if(state != ERR_NONE) {
return(state);
}
// set CAD parameters
delete[] data;
data = new uint8_t[7];
data[0] = SX126X_CAD_ON_8_SYMB;
data[1] = _sf + 13;
data[2] = 10;
data[3] = SX126X_CAD_GOTO_STDBY;
data[4] = 0x00;
data[5] = 0x00;
data[6] = 0x00;
state = SPIwriteCommand(SX126X_CMD_SET_CAD_PARAMS, data, 7);
if(state != ERR_NONE) {
return(state);
}
// clear IRQ
state = clearIrqStatus();
state |= setDioIrqParams(SX126X_IRQ_NONE, SX126X_IRQ_NONE);
if(state != ERR_NONE) {
return(state);
}
// calibrate all blocks
delete[] data;
data = new uint8_t[1];
data[0] = SX126X_CALIBRATE_ALL;
state = SPIwriteCommand(SX126X_CMD_CALIBRATE, data, 1);
if(state != ERR_NONE) {
return(state);
}
// wait for calibration completion
delayMicroseconds(1);
while(digitalRead(_mod->getRx()));
delete[] data;
return(ERR_NONE);
}
int16_t SX126x::SPIwriteCommand(uint8_t cmd, uint8_t* data, uint8_t numBytes, bool waitForBusy) {
return(SX126x::SPItransfer(cmd, true, data, NULL, numBytes, waitForBusy));
}
int16_t SX126x::SPIreadCommand(uint8_t cmd, uint8_t* data, uint8_t numBytes, bool waitForBusy) {
return(SX126x::SPItransfer(cmd, false, NULL, data, numBytes, waitForBusy));
}
int16_t SX126x::SPItransfer(uint8_t cmd, bool write, uint8_t* dataOut, uint8_t* dataIn, uint8_t numBytes, bool waitForBusy) {
// get pointer to used SPI interface and the settings
SPIClass* spi = _mod->getSpi();
SPISettings spiSettings = _mod->getSpiSettings();
// ensure BUSY is low (state meachine ready)
// TODO timeout
while(digitalRead(_mod->getRx()));
// start transfer
digitalWrite(_mod->getCs(), LOW);
spi->beginTransaction(spiSettings);
// send command byte
spi->transfer(cmd);
DEBUG_PRINT(cmd, HEX);
DEBUG_PRINT('\t');
// variable to save error during SPI transfer
uint8_t status = 0;
// send/receive all bytes
if(write) {
for(uint8_t n = 0; n < numBytes; n++) {
// send byte
uint8_t in = spi->transfer(dataOut[n]);
DEBUG_PRINT(dataOut[n], HEX);
DEBUG_PRINT('\t');
DEBUG_PRINT(in, HEX);
DEBUG_PRINT('\t');
// check status
if(((in & 0b00001110) == SX126X_STATUS_CMD_TIMEOUT) ||
((in & 0b00001110) == SX126X_STATUS_CMD_INVALID) ||
((in & 0b00001110) == SX126X_STATUS_CMD_FAILED)) {
status = in;
}
}
DEBUG_PRINTLN();
} else {
// skip the first byte for read-type commands (status-only)
uint8_t in = spi->transfer(SX126X_CMD_NOP);
DEBUG_PRINT(SX126X_CMD_NOP, HEX);
DEBUG_PRINT('\t');
DEBUG_PRINT(in, HEX);
DEBUG_PRINT('\t')
// check status
if(((in & 0b00001110) == SX126X_STATUS_CMD_TIMEOUT) ||
((in & 0b00001110) == SX126X_STATUS_CMD_INVALID) ||
((in & 0b00001110) == SX126X_STATUS_CMD_FAILED)) {
status = in;
}
for(uint8_t n = 0; n < numBytes; n++) {
dataIn[n] = spi->transfer(SX126X_CMD_NOP);
DEBUG_PRINT(SX126X_CMD_NOP, HEX);
DEBUG_PRINT('\t');
DEBUG_PRINT(dataIn[n], HEX);
DEBUG_PRINT('\t');
}
DEBUG_PRINTLN();
}
// stop transfer
spi->endTransaction();
digitalWrite(_mod->getCs(), HIGH);
// wait for BUSY to go high and then low
// TODO timeout
if(waitForBusy) {
delayMicroseconds(1);
while(digitalRead(_mod->getRx()));
}
// parse status
switch(status) {
case SX126X_STATUS_CMD_TIMEOUT:
return(ERR_SPI_CMD_TIMEOUT);
case SX126X_STATUS_CMD_INVALID:
return(ERR_SPI_CMD_INVALID);
case SX126X_STATUS_CMD_FAILED:
return(ERR_SPI_CMD_FAILED);
default:
return(ERR_NONE);
}
}