RadioLibSmol/examples/NonArduino/Raspberry/main.cpp
2023-04-30 22:10:48 +02:00

211 lines
5.1 KiB
C++

/*
RadioLib Non-Arduino Raspberry Pi Example
This example shows how to use RadioLib without Arduino.
In this case, a Raspberry Pi with WaveShare SX1302 LoRaWAN Hat
using the pigpio library.
Can be used as a starting point to port RadioLib to any platform!
See this API reference page for details on the RadioLib hardware abstraction
https://jgromes.github.io/RadioLib/class_hal.html
For full API reference, see the GitHub Pages
https://jgromes.github.io/RadioLib/
*/
// include the library
#include <RadioLib.h>
// include the library for Raspberry GPIO pins
#include "pigpio.h"
// create a new Raspberry Pi hardware abstraction layer
// using the pigpio library
// the HAL must inherit from the base RadioLibHal class
// and implement all of its virtual methods
class PiHal : public RadioLibHal {
public:
// default constructor - initializes the base HAL and any needed private members
PiHal(uint8_t spiChannel, uint32_t spiSpeed = 2000000)
: RadioLibHal(PI_INPUT, PI_OUTPUT, PI_LOW, PI_HIGH, RISING_EDGE, FALLING_EDGE),
_spiChannel(spiChannel),
_spiSpeed(spiSpeed) {
}
void init() override {
// first initialise pigpio library
gpioInitialise();
// now the SPI
spiBegin();
// Waveshare LoRaWAN Hat also needs pin 18 to be pulled high to enable the radio
gpioSetMode(18, PI_OUTPUT);
gpioWrite(18, PI_HIGH);
}
void term() override {
// stop the SPI
spiEnd();
// and now the pigpio library
gpioTerminate();
// finally, pull the enable pin low
gpioSetMode(18, PI_OUTPUT);
gpioWrite(18, PI_LOW);
}
// GPIO-related methods (pinMode, digitalWrite etc.) should check
// RADIOLIB_NC as an alias for non-connected pins
void pinMode(uint32_t pin, uint32_t mode) override {
if(pin == RADIOLIB_NC) {
return;
}
gpioSetMode(pin, mode);
}
void digitalWrite(uint32_t pin, uint32_t value) override {
if(pin == RADIOLIB_NC) {
return;
}
gpioWrite(pin, value);
}
uint32_t digitalRead(uint32_t pin) override {
if(pin == RADIOLIB_NC) {
return(0);
}
return(gpioRead(pin));
}
void attachInterrupt(uint32_t interruptNum, void (*interruptCb)(void), uint32_t mode) override {
if(interruptNum == RADIOLIB_NC) {
return;
}
gpioSetISRFunc(interruptNum, mode, 0, (gpioISRFunc_t)interruptCb);
}
void detachInterrupt(uint32_t interruptNum) override {
if(interruptNum == RADIOLIB_NC) {
return;
}
gpioSetISRFunc(interruptNum, NULL, NULL, nullptr);
}
void delay(unsigned long ms) override {
gpioDelay(ms * 1000);
}
void delayMicroseconds(unsigned long us) override {
gpioDelay(us);
}
unsigned long millis() override {
return(gpioTick() / 1000);
}
unsigned long micros() override {
return(gpioTick());
}
long pulseIn(uint32_t pin, uint32_t state, unsigned long timeout) override {
if(pin == RADIOLIB_NC) {
return(0);
}
gpioSetMode(pin, PI_INPUT);
uint32_t start = gpioTick();
uint32_t curtick = gpioTick();
while(gpioRead(pin) == state) {
if((gpioTick() - curtick) > timeout) {
return(0);
}
}
return(gpioTick() - start);
}
void spiBegin() {
if(_spiHandle < 0) {
_spiHandle = spiOpen(_spiChannel, _spiSpeed, 0);
}
}
void spiBeginTransaction() {}
uint8_t spiTransfer(uint8_t b) {
char ret;
spiXfer(_spiHandle, (char*)&b, &ret, 1);
return(ret);
}
void spiEndTransaction() {}
void spiEnd() {
if(_spiHandle >= 0) {
spiClose(_spiHandle);
_spiHandle = -1;
}
}
private:
// the HAL can contain any additional private members
const unsigned int _spiSpeed;
const uint8_t _spiChannel;
int _spiHandle = -1;
};
// create a new instance of the HAL class
// use SPI channel 1, because on Waveshare LoRaWAN Hat,
// the SX1261 CS is connected to CE1
PiHal* hal = new PiHal(1);
// now we can create the radio module
// the first argument is a new instance of the HAL class defined above
// the others are pin numbers
// pinout corresponds to the Waveshare LoRaWAN Hat
// NSS pin: 7
// DIO1 pin: 17
// NRST pin: 22
// BUSY pin: 4
SX1261 radio = new Module(hal, 7, 17, 22, 4);
// the entry point for the program
int main(int argc, char** argv) {
// initialize just like with Arduino
printf("[SX1261] Initializing ... ");
int state = radio.begin();
if (state != RADIOLIB_ERR_NONE) {
printf("failed, code %d\n", state);
return(1);
}
printf("success!\n");
// loop forever
for(;;) {
// send a packet
printf("[SX1261] Transmitting packet ... ");
state = radio.transmit("Hello World!");
if(state == RADIOLIB_ERR_NONE) {
// the packet was successfully transmitted
printf("success!");
// wait for a second before transmitting again
hal->delay(1000);
} else {
printf("failed, code %d\n", state);
}
}
return(0);
}