211 lines
5.1 KiB
C++
211 lines
5.1 KiB
C++
/*
|
|
RadioLib Non-Arduino Raspberry Pi Example
|
|
|
|
This example shows how to use RadioLib without Arduino.
|
|
In this case, a Raspberry Pi with WaveShare SX1302 LoRaWAN Hat
|
|
using the pigpio library.
|
|
|
|
Can be used as a starting point to port RadioLib to any platform!
|
|
See this API reference page for details on the RadioLib hardware abstraction
|
|
https://jgromes.github.io/RadioLib/class_hal.html
|
|
|
|
For full API reference, see the GitHub Pages
|
|
https://jgromes.github.io/RadioLib/
|
|
*/
|
|
|
|
// include the library
|
|
#include <RadioLib.h>
|
|
|
|
// include the library for Raspberry GPIO pins
|
|
#include "pigpio.h"
|
|
|
|
// create a new Raspberry Pi hardware abstraction layer
|
|
// using the pigpio library
|
|
// the HAL must inherit from the base RadioLibHal class
|
|
// and implement all of its virtual methods
|
|
class PiHal : public RadioLibHal {
|
|
public:
|
|
// default constructor - initializes the base HAL and any needed private members
|
|
PiHal(uint8_t spiChannel, uint32_t spiSpeed = 2000000)
|
|
: RadioLibHal(PI_INPUT, PI_OUTPUT, PI_LOW, PI_HIGH, RISING_EDGE, FALLING_EDGE),
|
|
_spiChannel(spiChannel),
|
|
_spiSpeed(spiSpeed) {
|
|
}
|
|
|
|
void init() override {
|
|
// first initialise pigpio library
|
|
gpioInitialise();
|
|
|
|
// now the SPI
|
|
spiBegin();
|
|
|
|
// Waveshare LoRaWAN Hat also needs pin 18 to be pulled high to enable the radio
|
|
gpioSetMode(18, PI_OUTPUT);
|
|
gpioWrite(18, PI_HIGH);
|
|
}
|
|
|
|
void term() override {
|
|
// stop the SPI
|
|
spiEnd();
|
|
|
|
// and now the pigpio library
|
|
gpioTerminate();
|
|
|
|
// finally, pull the enable pin low
|
|
gpioSetMode(18, PI_OUTPUT);
|
|
gpioWrite(18, PI_LOW);
|
|
}
|
|
|
|
// GPIO-related methods (pinMode, digitalWrite etc.) should check
|
|
// RADIOLIB_NC as an alias for non-connected pins
|
|
void pinMode(uint32_t pin, uint32_t mode) override {
|
|
if(pin == RADIOLIB_NC) {
|
|
return;
|
|
}
|
|
|
|
gpioSetMode(pin, mode);
|
|
}
|
|
|
|
void digitalWrite(uint32_t pin, uint32_t value) override {
|
|
if(pin == RADIOLIB_NC) {
|
|
return;
|
|
}
|
|
|
|
gpioWrite(pin, value);
|
|
}
|
|
|
|
uint32_t digitalRead(uint32_t pin) override {
|
|
if(pin == RADIOLIB_NC) {
|
|
return(0);
|
|
}
|
|
|
|
return(gpioRead(pin));
|
|
}
|
|
|
|
void attachInterrupt(uint32_t interruptNum, void (*interruptCb)(void), uint32_t mode) override {
|
|
if(interruptNum == RADIOLIB_NC) {
|
|
return;
|
|
}
|
|
|
|
gpioSetISRFunc(interruptNum, mode, 0, (gpioISRFunc_t)interruptCb);
|
|
}
|
|
|
|
void detachInterrupt(uint32_t interruptNum) override {
|
|
if(interruptNum == RADIOLIB_NC) {
|
|
return;
|
|
}
|
|
|
|
gpioSetISRFunc(interruptNum, NULL, NULL, nullptr);
|
|
}
|
|
|
|
void delay(unsigned long ms) override {
|
|
gpioDelay(ms * 1000);
|
|
}
|
|
|
|
void delayMicroseconds(unsigned long us) override {
|
|
gpioDelay(us);
|
|
}
|
|
|
|
unsigned long millis() override {
|
|
return(gpioTick() / 1000);
|
|
}
|
|
|
|
unsigned long micros() override {
|
|
return(gpioTick());
|
|
}
|
|
|
|
long pulseIn(uint32_t pin, uint32_t state, unsigned long timeout) override {
|
|
if(pin == RADIOLIB_NC) {
|
|
return(0);
|
|
}
|
|
|
|
gpioSetMode(pin, PI_INPUT);
|
|
uint32_t start = gpioTick();
|
|
uint32_t curtick = gpioTick();
|
|
|
|
while(gpioRead(pin) == state) {
|
|
if((gpioTick() - curtick) > timeout) {
|
|
return(0);
|
|
}
|
|
}
|
|
|
|
return(gpioTick() - start);
|
|
}
|
|
|
|
void spiBegin() {
|
|
if(_spiHandle < 0) {
|
|
_spiHandle = spiOpen(_spiChannel, _spiSpeed, 0);
|
|
}
|
|
}
|
|
|
|
void spiBeginTransaction() {}
|
|
|
|
uint8_t spiTransfer(uint8_t b) {
|
|
char ret;
|
|
spiXfer(_spiHandle, (char*)&b, &ret, 1);
|
|
return(ret);
|
|
}
|
|
|
|
void spiEndTransaction() {}
|
|
|
|
void spiEnd() {
|
|
if(_spiHandle >= 0) {
|
|
spiClose(_spiHandle);
|
|
_spiHandle = -1;
|
|
}
|
|
}
|
|
|
|
private:
|
|
// the HAL can contain any additional private members
|
|
const unsigned int _spiSpeed;
|
|
const uint8_t _spiChannel;
|
|
int _spiHandle = -1;
|
|
};
|
|
|
|
// create a new instance of the HAL class
|
|
// use SPI channel 1, because on Waveshare LoRaWAN Hat,
|
|
// the SX1261 CS is connected to CE1
|
|
PiHal* hal = new PiHal(1);
|
|
|
|
// now we can create the radio module
|
|
// the first argument is a new instance of the HAL class defined above
|
|
// the others are pin numbers
|
|
// pinout corresponds to the Waveshare LoRaWAN Hat
|
|
// NSS pin: 7
|
|
// DIO1 pin: 17
|
|
// NRST pin: 22
|
|
// BUSY pin: 4
|
|
SX1261 radio = new Module(hal, 7, 17, 22, 4);
|
|
|
|
// the entry point for the program
|
|
int main(int argc, char** argv) {
|
|
// initialize just like with Arduino
|
|
printf("[SX1261] Initializing ... ");
|
|
int state = radio.begin();
|
|
if (state != RADIOLIB_ERR_NONE) {
|
|
printf("failed, code %d\n", state);
|
|
return(1);
|
|
}
|
|
printf("success!\n");
|
|
|
|
// loop forever
|
|
for(;;) {
|
|
// send a packet
|
|
printf("[SX1261] Transmitting packet ... ");
|
|
state = radio.transmit("Hello World!");
|
|
if(state == RADIOLIB_ERR_NONE) {
|
|
// the packet was successfully transmitted
|
|
printf("success!");
|
|
|
|
// wait for a second before transmitting again
|
|
hal->delay(1000);
|
|
|
|
} else {
|
|
printf("failed, code %d\n", state);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return(0);
|
|
}
|