RadioLibSmol/examples/NonArduino/ESP-IDF/main/EspHal.h

322 lines
8.9 KiB
C++

#ifndef ESP_HAL_H
#define ESP_HAL_H
// include RadioLib
#include <RadioLib.h>
// this example only works on ESP32 and is unlikely to work on ESP32S2/S3 etc.
// if you need high portability, you should probably use Arduino anyway ...
#if CONFIG_IDF_TARGET_ESP32 == 0
#error Target is not ESP32!
#endif
// include all the dependencies
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp32/rom/gpio.h"
#include "soc/rtc.h"
#include "soc/dport_reg.h"
#include "soc/spi_reg.h"
#include "soc/spi_struct.h"
#include "driver/gpio.h"
#include "hal/gpio_hal.h"
#include "esp_timer.h"
#include "esp_log.h"
// define Arduino-style macros
#define LOW (0x0)
#define HIGH (0x1)
#define INPUT (0x01)
#define OUTPUT (0x03)
#define RISING (0x01)
#define FALLING (0x02)
#define NOP() asm volatile ("nop")
#define MATRIX_DETACH_OUT_SIG (0x100)
#define MATRIX_DETACH_IN_LOW_PIN (0x30)
// all of the following is needed to calculate SPI clock divider
#define ClkRegToFreq(reg) (apb_freq / (((reg)->clkdiv_pre + 1) * ((reg)->clkcnt_n + 1)))
typedef union {
uint32_t value;
struct {
uint32_t clkcnt_l: 6;
uint32_t clkcnt_h: 6;
uint32_t clkcnt_n: 6;
uint32_t clkdiv_pre: 13;
uint32_t clk_equ_sysclk: 1;
};
} spiClk_t;
uint32_t getApbFrequency() {
rtc_cpu_freq_config_t conf;
rtc_clk_cpu_freq_get_config(&conf);
if(conf.freq_mhz >= 80) {
return(80 * MHZ);
}
return((conf.source_freq_mhz * MHZ) / conf.div);
}
uint32_t spiFrequencyToClockDiv(uint32_t freq) {
uint32_t apb_freq = getApbFrequency();
if(freq >= apb_freq) {
return SPI_CLK_EQU_SYSCLK;
}
const spiClk_t minFreqReg = { 0x7FFFF000 };
uint32_t minFreq = ClkRegToFreq((spiClk_t*) &minFreqReg);
if(freq < minFreq) {
return minFreqReg.value;
}
uint8_t calN = 1;
spiClk_t bestReg = { 0 };
int32_t bestFreq = 0;
while(calN <= 0x3F) {
spiClk_t reg = { 0 };
int32_t calFreq;
int32_t calPre;
int8_t calPreVari = -2;
reg.clkcnt_n = calN;
while(calPreVari++ <= 1) {
calPre = (((apb_freq / (reg.clkcnt_n + 1)) / freq) - 1) + calPreVari;
if(calPre > 0x1FFF) {
reg.clkdiv_pre = 0x1FFF;
} else if(calPre <= 0) {
reg.clkdiv_pre = 0;
} else {
reg.clkdiv_pre = calPre;
}
reg.clkcnt_l = ((reg.clkcnt_n + 1) / 2);
calFreq = ClkRegToFreq(&reg);
if(calFreq == (int32_t) freq) {
memcpy(&bestReg, &reg, sizeof(bestReg));
break;
} else if(calFreq < (int32_t) freq) {
if(RADIOLIB_ABS(freq - calFreq) < RADIOLIB_ABS(freq - bestFreq)) {
bestFreq = calFreq;
memcpy(&bestReg, &reg, sizeof(bestReg));
}
}
}
if(calFreq == (int32_t) freq) {
break;
}
calN++;
}
return(bestReg.value);
}
// create a new ESP-IDF hardware abstraction layer
// the HAL must inherit from the base RadioLibHal class
// and implement all of its virtual methods
// this is pretty much just copied from Arduino ESP32 core
class EspHal : public RadioLibHal {
public:
// default constructor - initializes the base HAL and any needed private members
EspHal(int8_t sck, int8_t miso, int8_t mosi)
: RadioLibHal(INPUT, OUTPUT, LOW, HIGH, RISING, FALLING),
spiSCK(sck), spiMISO(miso), spiMOSI(mosi) {
}
void init() override {
// we only need to init the SPI here
spiBegin();
}
void term() override {
// we only need to stop the SPI here
spiEnd();
}
// GPIO-related methods (pinMode, digitalWrite etc.) should check
// RADIOLIB_NC as an alias for non-connected pins
void pinMode(uint32_t pin, uint32_t mode) override {
if(pin == RADIOLIB_NC) {
return;
}
gpio_hal_context_t gpiohal;
gpiohal.dev = GPIO_LL_GET_HW(GPIO_PORT_0);
gpio_config_t conf = {
.pin_bit_mask = (1ULL<<pin),
.mode = (gpio_mode_t)mode,
.pull_up_en = GPIO_PULLUP_DISABLE,
.pull_down_en = GPIO_PULLDOWN_DISABLE,
.intr_type = (gpio_int_type_t)gpiohal.dev->pin[pin].int_type,
};
gpio_config(&conf);
}
void digitalWrite(uint32_t pin, uint32_t value) override {
if(pin == RADIOLIB_NC) {
return;
}
gpio_set_level((gpio_num_t)pin, value);
}
uint32_t digitalRead(uint32_t pin) override {
if(pin == RADIOLIB_NC) {
return(0);
}
return(gpio_get_level((gpio_num_t)pin));
}
void attachInterrupt(uint32_t interruptNum, void (*interruptCb)(void), uint32_t mode) override {
if(interruptNum == RADIOLIB_NC) {
return;
}
gpio_install_isr_service((int)ESP_INTR_FLAG_IRAM);
gpio_set_intr_type((gpio_num_t)interruptNum, (gpio_int_type_t)(mode & 0x7));
// this uses function typecasting, which is not defined when the functions have different signatures
// untested and might not work
gpio_isr_handler_add((gpio_num_t)interruptNum, (void (*)(void*))interruptCb, NULL);
}
void detachInterrupt(uint32_t interruptNum) override {
if(interruptNum == RADIOLIB_NC) {
return;
}
gpio_isr_handler_remove((gpio_num_t)interruptNum);
gpio_wakeup_disable((gpio_num_t)interruptNum);
gpio_set_intr_type((gpio_num_t)interruptNum, GPIO_INTR_DISABLE);
}
void delay(unsigned long ms) override {
vTaskDelay(ms / portTICK_PERIOD_MS);
}
void delayMicroseconds(unsigned long us) override {
uint64_t m = (uint64_t)esp_timer_get_time();
if(us) {
uint64_t e = (m + us);
if(m > e) { // overflow
while((uint64_t)esp_timer_get_time() > e) {
NOP();
}
}
while((uint64_t)esp_timer_get_time() < e) {
NOP();
}
}
}
unsigned long millis() override {
return((unsigned long)(esp_timer_get_time() / 1000ULL));
}
unsigned long micros() override {
return((unsigned long)(esp_timer_get_time()));
}
long pulseIn(uint32_t pin, uint32_t state, unsigned long timeout) override {
if(pin == RADIOLIB_NC) {
return(0);
}
this->pinMode(pin, INPUT);
uint32_t start = this->micros();
uint32_t curtick = this->micros();
while(this->digitalRead(pin) == state) {
if((this->micros() - curtick) > timeout) {
return(0);
}
}
return(this->micros() - start);
}
void spiBegin() {
// enable peripheral
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_SPI2_CLK_EN);
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_SPI2_RST);
// reset the control struct
this->spi->slave.trans_done = 0;
this->spi->slave.val = 0;
this->spi->pin.val = 0;
this->spi->user.val = 0;
this->spi->user1.val = 0;
this->spi->ctrl.val = 0;
this->spi->ctrl1.val = 0;
this->spi->ctrl2.val = 0;
this->spi->clock.val = 0;
this->spi->user.usr_mosi = 1;
this->spi->user.usr_miso = 1;
this->spi->user.doutdin = 1;
for(uint8_t i = 0; i < 16; i++) {
this->spi->data_buf[i] = 0x00000000;
}
// set SPI mode 0
this->spi->pin.ck_idle_edge = 0;
this->spi->user.ck_out_edge = 0;
// set bit order to MSB first
this->spi->ctrl.wr_bit_order = 0;
this->spi->ctrl.rd_bit_order = 0;
// set the clock
this->spi->clock.val = spiFrequencyToClockDiv(2000000);
// initialize pins
this->pinMode(this->spiSCK, OUTPUT);
this->pinMode(this->spiMISO, INPUT);
this->pinMode(this->spiMOSI, OUTPUT);
gpio_matrix_out(this->spiSCK, HSPICLK_OUT_IDX, false, false);
gpio_matrix_in(this->spiMISO, HSPIQ_OUT_IDX, false);
gpio_matrix_out(this->spiMOSI, HSPID_IN_IDX, false, false);
}
void spiBeginTransaction() {
// not needed - in ESP32 Arduino core, this function
// repeats clock div, mode and bit order configuration
}
uint8_t spiTransferByte(uint8_t b) {
this->spi->mosi_dlen.usr_mosi_dbitlen = 7;
this->spi->miso_dlen.usr_miso_dbitlen = 7;
this->spi->data_buf[0] = b;
this->spi->cmd.usr = 1;
while(this->spi->cmd.usr);
return(this->spi->data_buf[0] & 0xFF);
}
void spiTransfer(uint8_t* out, size_t len, uint8_t* in) {
for(size_t i = 0; i < len; i++) {
in[i] = this->spiTransferByte(out[i]);
}
}
void spiEndTransaction() {
// nothing needs to be done here
}
void spiEnd() {
// detach pins
gpio_matrix_out(this->spiSCK, MATRIX_DETACH_OUT_SIG, false, false);
gpio_matrix_in(this->spiMISO, MATRIX_DETACH_IN_LOW_PIN, false);
gpio_matrix_out(this->spiMOSI, MATRIX_DETACH_OUT_SIG, false, false);
}
private:
// the HAL can contain any additional private members
int8_t spiSCK;
int8_t spiMISO;
int8_t spiMOSI;
spi_dev_t * spi = (volatile spi_dev_t *)(DR_REG_SPI2_BASE);
};
#endif