RadioLibSmol/src/protocols/PhysicalLayer/PhysicalLayer.cpp
2021-06-14 20:59:38 +02:00

235 lines
5.4 KiB
C++

#include "PhysicalLayer.h"
PhysicalLayer::PhysicalLayer(float freqStep, size_t maxPacketLength) {
_freqStep = freqStep;
_maxPacketLength = maxPacketLength;
_bufferBitPos = 0;
_bufferWritePos = 0;
}
int16_t PhysicalLayer::transmit(__FlashStringHelper* fstr, uint8_t addr) {
// read flash string length
size_t len = 0;
PGM_P p = reinterpret_cast<PGM_P>(fstr);
while(true) {
char c = RADIOLIB_PROGMEM_READ_BYTE(p++);
len++;
if(c == '\0') {
break;
}
}
// dynamically allocate memory
#ifdef RADIOLIB_STATIC_ONLY
char str[RADIOLIB_STATIC_ARRAY_SIZE];
#else
char* str = new char[len];
#endif
// copy string from flash
p = reinterpret_cast<PGM_P>(fstr);
for(size_t i = 0; i < len; i++) {
str[i] = RADIOLIB_PROGMEM_READ_BYTE(p + i);
}
// transmit string
int16_t state = transmit(str, addr);
#ifndef RADIOLIB_STATIC_ONLY
delete[] str;
#endif
return(state);
}
int16_t PhysicalLayer::transmit(String& str, uint8_t addr) {
return(transmit(str.c_str(), addr));
}
int16_t PhysicalLayer::transmit(const char* str, uint8_t addr) {
return(transmit((uint8_t*)str, strlen(str), addr));
}
int16_t PhysicalLayer::startTransmit(String& str, uint8_t addr) {
return(startTransmit(str.c_str(), addr));
}
int16_t PhysicalLayer::startTransmit(const char* str, uint8_t addr) {
return(startTransmit((uint8_t*)str, strlen(str), addr));
}
int16_t PhysicalLayer::readData(String& str, size_t len) {
int16_t state = ERR_NONE;
// read the number of actually received bytes
size_t length = getPacketLength();
if((len < length) && (len != 0)) {
// user requested less bytes than were received, this is allowed (but frowned upon)
// requests for more data than were received will only return the number of actually received bytes (unlike PhysicalLayer::receive())
length = len;
}
// build a temporary buffer
#ifdef RADIOLIB_STATIC_ONLY
uint8_t data[RADIOLIB_STATIC_ARRAY_SIZE + 1];
#else
uint8_t* data = new uint8_t[length + 1];
if(!data) {
return(ERR_MEMORY_ALLOCATION_FAILED);
}
#endif
// read the received data
state = readData(data, length);
if(state == ERR_NONE) {
// add null terminator
data[length] = 0;
// initialize Arduino String class
str = String((char*)data);
}
// deallocate temporary buffer
#ifndef RADIOLIB_STATIC_ONLY
delete[] data;
#endif
return(state);
}
int16_t PhysicalLayer::receive(String& str, size_t len) {
int16_t state = ERR_NONE;
// user can override the length of data to read
size_t length = len;
if(len == 0) {
// unknown packet length, set to maximum
length = _maxPacketLength;
}
// build a temporary buffer
#ifdef RADIOLIB_STATIC_ONLY
uint8_t data[RADIOLIB_STATIC_ARRAY_SIZE + 1];
#else
uint8_t* data = new uint8_t[length + 1];
if(!data) {
return(ERR_MEMORY_ALLOCATION_FAILED);
}
#endif
// attempt packet reception
state = receive(data, length);
if(state == ERR_NONE) {
// read the number of actually received bytes (for unknown packets)
if(len == 0) {
length = getPacketLength(false);
}
// add null terminator
data[length] = 0;
// initialize Arduino String class
str = String((char*)data);
}
// deallocate temporary buffer
#ifndef RADIOLIB_STATIC_ONLY
delete[] data;
#endif
return(state);
}
float PhysicalLayer::getFreqStep() const {
return(_freqStep);
}
int32_t PhysicalLayer::random(int32_t max) {
if(max == 0) {
return(0);
}
// get random bytes from the radio
uint8_t randBuff[4];
for(uint8_t i = 0; i < 4; i++) {
randBuff[i] = random();
}
// create 32-bit TRNG number
int32_t randNum = ((int32_t)randBuff[0] << 24) | ((int32_t)randBuff[1] << 16) | ((int32_t)randBuff[2] << 8) | ((int32_t)randBuff[3]);
return(randNum % max);
}
int32_t PhysicalLayer::random(int32_t min, int32_t max) {
if(min >= max) {
return(min);
}
return(PhysicalLayer::random(max - min) + min);
}
int16_t PhysicalLayer::startDirect() {
// disable encodings
int16_t state = setEncoding(RADIOLIB_ENCODING_NRZ);
RADIOLIB_ASSERT(state);
// disable shaping
state = setDataShaping(RADIOLIB_SHAPING_NONE);
RADIOLIB_ASSERT(state);
// set frequency deviation to the lowest possible value
state = setFrequencyDeviation(-1);
return(state);
}
int16_t PhysicalLayer::available() {
return(_bufferWritePos);
}
uint8_t PhysicalLayer::read() {
_gotSync = false;
_syncBuffer = 0;
_bufferWritePos--;
return(_buffer[_bufferReadPos++]);
}
int16_t PhysicalLayer::setDirectSyncWord(uint32_t syncWord, uint8_t len) {
if((len > 32) || (len == 0)) {
return(ERR_INVALID_SYNC_WORD);
}
_directSyncWordMask = 0xFFFFFFFF >> (32 - len);
_directSyncWord = syncWord;
return(ERR_NONE);
}
void PhysicalLayer::updateDirectBuffer(uint8_t bit) {
// check sync word
if(!_gotSync) {
_syncBuffer <<= 1;
_syncBuffer |= bit;
if((_syncBuffer & _directSyncWordMask) == _directSyncWord) {
_gotSync = true;
_bufferWritePos = 0;
_bufferReadPos = 0;
_bufferBitPos = 0;
}
} else {
// save the bit
if(bit) {
_buffer[_bufferWritePos] |= 0x01 << _bufferBitPos;
} else {
_buffer[_bufferWritePos] &= ~(0x01 << _bufferBitPos);
}
_bufferBitPos++;
// check complete byte
if(_bufferBitPos == 8) {
_buffer[_bufferWritePos] = Module::flipBits(_buffer[_bufferWritePos]);
_bufferWritePos++;
_bufferBitPos = 0;
}
}
}