124 lines
4.1 KiB
C++
124 lines
4.1 KiB
C++
/*
|
|
RadioLib LoRaWAN End Device Example
|
|
|
|
This example joins a LoRaWAN network and will send
|
|
uplink packets. Before you start, you will have to
|
|
register your device at https://www.thethingsnetwork.org/
|
|
After your device is registered, you can run this example.
|
|
The device will join the network and start uploading data.
|
|
|
|
NOTE: LoRaWAN requires storing some parameters persistently!
|
|
RadioLib does this by using EEPROM, by default
|
|
starting at address 0 and using 32 bytes.
|
|
If you already use EEPROM in your application,
|
|
you will have to either avoid this range, or change it
|
|
by setting a different start address by changing the value of
|
|
RADIOLIB_HAL_PERSISTENT_STORAGE_BASE macro, either
|
|
during build or in src/BuildOpt.h.
|
|
|
|
For default module settings, see the wiki page
|
|
https://github.com/jgromes/RadioLib/wiki/Default-configuration
|
|
|
|
For full API reference, see the GitHub Pages
|
|
https://jgromes.github.io/RadioLib/
|
|
*/
|
|
|
|
// include the library
|
|
#include <RadioLib.h>
|
|
|
|
// SX1278 has the following connections:
|
|
// NSS pin: 10
|
|
// DIO0 pin: 2
|
|
// RESET pin: 9
|
|
// DIO1 pin: 3
|
|
SX1278 radio = new Module(10, 2, 9, 3);
|
|
|
|
// create the node instance on the EU-868 band
|
|
// using the radio module and the encryption key
|
|
// make sure you are using the correct band
|
|
// based on your geographical location!
|
|
LoRaWANNode node(&radio, &EU868);
|
|
|
|
void setup() {
|
|
Serial.begin(9600);
|
|
|
|
// initialize SX1278 with default settings
|
|
Serial.print(F("[SX1278] Initializing ... "));
|
|
int state = radio.begin();
|
|
if(state == RADIOLIB_ERR_NONE) {
|
|
Serial.println(F("success!"));
|
|
} else {
|
|
Serial.print(F("failed, code "));
|
|
Serial.println(state);
|
|
while(true);
|
|
}
|
|
|
|
// first we need to initialize the device storage
|
|
// this will reset all persistently stored parameters
|
|
// NOTE: This should only be done once prior to first joining a network!
|
|
// After wiping persistent storage, you will also have to reset
|
|
// the end device in TTN and perform the join procedure again!
|
|
//node.wipe();
|
|
|
|
// application identifier - in LoRaWAN 1.1, it is also called joinEUI
|
|
// when adding new end device in TTN, you will have to enter this number
|
|
// you can pick any number you want, but it has to be unique
|
|
uint64_t appEUI = 0x12AD1011B0C0FFEE;
|
|
|
|
// device identifier - this number can be anything
|
|
// when adding new end device in TTN, you can generate this number,
|
|
// or you can set any value you want, provided it is also unique
|
|
uint64_t devEUI = 0x70B3D57ED005E120;
|
|
|
|
// select some encryption keys which will be used to secure the communication
|
|
// there are two of them - network key and application key
|
|
// because LoRaWAN uses AES-128, the key MUST be 16 bytes (or characters) long
|
|
const char nwkKey[] = "topSecretKey1234";
|
|
const char appKey[] = "aDifferentKeyABC";
|
|
|
|
// now we can start the activation
|
|
// this can take up to 20 seconds, and requires a LoRaWAN gateway in range
|
|
Serial.print(F("[LoRaWAN] Attempting over-the-air activation ... "));
|
|
state = node.beginOTAA(appEUI, devEUI, (uint8_t*)nwkKey, (uint8_t*)appKey);
|
|
if(state == RADIOLIB_ERR_NONE) {
|
|
Serial.println(F("success!"));
|
|
} else {
|
|
Serial.print(F("failed, code "));
|
|
Serial.println(state);
|
|
while(true);
|
|
}
|
|
|
|
// after the device has been activated,
|
|
// network can be rejoined after device power cycle
|
|
// by calling "begin"
|
|
/*
|
|
Serial.print(F("[LoRaWAN] Resuming previous session ... "));
|
|
state = node.begin();
|
|
if(state == RADIOLIB_ERR_NONE) {
|
|
Serial.println(F("success!"));
|
|
} else {
|
|
Serial.print(F("failed, code "));
|
|
Serial.println(state);
|
|
while(true);
|
|
}
|
|
*/
|
|
}
|
|
|
|
// counter to keep track of transmitted packets
|
|
int count = 0;
|
|
|
|
void loop() {
|
|
// send uplink to port 10
|
|
Serial.print(F("[LoRaWAN] Sending uplink packet ... "));
|
|
String str = "Hello World! #" + String(count++);
|
|
int state = node.uplink(str, 10);
|
|
if(state == RADIOLIB_ERR_NONE) {
|
|
Serial.println(F("success!"));
|
|
} else {
|
|
Serial.print(F("failed, code "));
|
|
Serial.println(state);
|
|
}
|
|
|
|
// wait before sending another one
|
|
delay(10000);
|
|
}
|