RadioLibSmol/examples/LoRaWAN/LoRaWAN_End_Device/LoRaWAN_End_Device.ino

124 lines
4.1 KiB
C++

/*
RadioLib LoRaWAN End Device Example
This example joins a LoRaWAN network and will send
uplink packets. Before you start, you will have to
register your device at https://www.thethingsnetwork.org/
After your device is registered, you can run this example.
The device will join the network and start uploading data.
NOTE: LoRaWAN requires storing some parameters persistently!
RadioLib does this by using EEPROM, by default
starting at address 0 and using 32 bytes.
If you already use EEPROM in your application,
you will have to either avoid this range, or change it
by setting a different start address by changing the value of
RADIOLIB_HAL_PERSISTENT_STORAGE_BASE macro, either
during build or in src/BuildOpt.h.
For default module settings, see the wiki page
https://github.com/jgromes/RadioLib/wiki/Default-configuration
For full API reference, see the GitHub Pages
https://jgromes.github.io/RadioLib/
*/
// include the library
#include <RadioLib.h>
// SX1278 has the following connections:
// NSS pin: 10
// DIO0 pin: 2
// RESET pin: 9
// DIO1 pin: 3
SX1278 radio = new Module(10, 2, 9, 3);
// create the node instance on the EU-868 band
// using the radio module and the encryption key
// make sure you are using the correct band
// based on your geographical location!
LoRaWANNode node(&radio, &EU868);
void setup() {
Serial.begin(9600);
// initialize SX1278 with default settings
Serial.print(F("[SX1278] Initializing ... "));
int state = radio.begin();
if(state == RADIOLIB_ERR_NONE) {
Serial.println(F("success!"));
} else {
Serial.print(F("failed, code "));
Serial.println(state);
while(true);
}
// first we need to initialize the device storage
// this will reset all persistently stored parameters
// NOTE: This should only be done once prior to first joining a network!
// After wiping persistent storage, you will also have to reset
// the end device in TTN and perform the join procedure again!
//node.wipe();
// application identifier - in LoRaWAN 1.1, it is also called joinEUI
// when adding new end device in TTN, you will have to enter this number
// you can pick any number you want, but it has to be unique
uint64_t appEUI = 0x12AD1011B0C0FFEE;
// device identifier - this number can be anything
// when adding new end device in TTN, you can generate this number,
// or you can set any value you want, provided it is also unique
uint64_t devEUI = 0x70B3D57ED005E120;
// select some encryption keys which will be used to secure the communication
// there are two of them - network key and application key
// because LoRaWAN uses AES-128, the key MUST be 16 bytes (or characters) long
const char nwkKey[] = "topSecretKey1234";
const char appKey[] = "aDifferentKeyABC";
// now we can start the activation
// this can take up to 20 seconds, and requires a LoRaWAN gateway in range
Serial.print(F("[LoRaWAN] Attempting over-the-air activation ... "));
state = node.beginOTAA(appEUI, devEUI, (uint8_t*)nwkKey, (uint8_t*)appKey);
if(state == RADIOLIB_ERR_NONE) {
Serial.println(F("success!"));
} else {
Serial.print(F("failed, code "));
Serial.println(state);
while(true);
}
// after the device has been activated,
// network can be rejoined after device power cycle
// by calling "begin"
/*
Serial.print(F("[LoRaWAN] Resuming previous session ... "));
state = node.begin();
if(state == RADIOLIB_ERR_NONE) {
Serial.println(F("success!"));
} else {
Serial.print(F("failed, code "));
Serial.println(state);
while(true);
}
*/
}
// counter to keep track of transmitted packets
int count = 0;
void loop() {
// send uplink to port 10
Serial.print(F("[LoRaWAN] Sending uplink packet ... "));
String str = "Hello World! #" + String(count++);
int state = node.uplink(str, 10);
if(state == RADIOLIB_ERR_NONE) {
Serial.println(F("success!"));
} else {
Serial.print(F("failed, code "));
Serial.println(state);
}
// wait before sending another one
delay(10000);
}