RadioLibSmol/examples/LoRaWAN/LoRaWAN_ABP/LoRaWAN_ABP.ino

178 lines
6.2 KiB
C++

/*
RadioLib LoRaWAN End Device ABP Example
This example sets up a LoRaWAN node using ABP (activation
by personalization). Before you start, you will have to
register your device at https://www.thethingsnetwork.org/
After your device is registered, you can run this example.
The device will start uploading data directly,
without having to join the network.
NOTE: LoRaWAN v1.1 requires storing parameters persistently!
RadioLib does this by using EEPROM (persistent storage),
by default starting at address 0 and using 448 bytes.
If you already use EEPROM in your application,
you will have to either avoid this range, or change it
by setting a different start address by changing the value of
RADIOLIB_HAL_PERSISTENT_STORAGE_BASE macro, either
during build or in src/BuildOpt.h.
For default module settings, see the wiki page
https://github.com/jgromes/RadioLib/wiki/Default-configuration
For full API reference, see the GitHub Pages
https://jgromes.github.io/RadioLib/
*/
// include the library
#include <RadioLib.h>
// SX1262 has the following pin order:
// Module(NSS/CS, DIO1, RESET, BUSY)
// SX1262 radio = new Module(8, 14, 12, 13);
// SX1278 has the following pin order:
// Module(NSS/CS, DIO0, RESET, DIO1)
SX1278 radio = new Module(10, 2, 9, 3);
// create the node instance on the EU-868 band
// using the radio module and the encryption key
// make sure you are using the correct band
// based on your geographical location!
LoRaWANNode node(&radio, &EU868);
// for fixed bands with subband selection
// such as US915 and AU915, you must specify
// the subband that matches the Frequency Plan
// that you selected on your LoRaWAN console
/*
LoRaWANNode node(&radio, &US915, 2);
*/
void setup() {
Serial.begin(9600);
// initialize radio (SX1262 / SX1278 / ... ) with default settings
Serial.print(F("[Radio] Initializing ... "));
int state = radio.begin();
if(state == RADIOLIB_ERR_NONE) {
Serial.println(F("success!"));
} else {
Serial.print(F("failed, code "));
Serial.println(state);
while(true);
}
// device address - this number can be anything
// when adding new end device in TTN, you can generate this number,
// or you can set any value you want, provided it is unique
uint32_t devAddr = 0x12345678;
// select some encryption keys which will be used to secure the communication
// there are two of them - network key and application key
// because LoRaWAN uses AES-128, the key MUST be 16 bytes (or characters) long
// network key is the ASCII string "topSecretKey1234"
uint8_t nwkSKey[] = { 0x74, 0x6F, 0x70, 0x53, 0x65, 0x63, 0x72, 0x65,
0x74, 0x4B, 0x65, 0x79, 0x31, 0x32, 0x33, 0x34 };
// application key is the ASCII string "aDifferentKeyABC"
uint8_t appSKey[] = { 0x61, 0x44, 0x69, 0x66, 0x66, 0x65, 0x72, 0x65,
0x6E, 0x74, 0x4B, 0x65, 0x79, 0x41, 0x42, 0x43 };
// network key 2 is the ASCII string "topSecretKey5678"
uint8_t fNwkSIntKey[] = { 0x61, 0x44, 0x69, 0x66, 0x66, 0x65, 0x72, 0x65,
0x6E, 0x74, 0x4B, 0x65, 0x35, 0x36, 0x37, 0x38 };
// network key 3 is the ASCII string "aDifferentKeyDEF"
uint8_t sNwkSIntKey[] = { 0x61, 0x44, 0x69, 0x66, 0x66, 0x65, 0x72, 0x65,
0x6E, 0x74, 0x4B, 0x65, 0x79, 0x44, 0x45, 0x46 };
// prior to LoRaWAN 1.1.0, only a single "nwkKey" is used
// when connecting to LoRaWAN 1.0 network, "appKey" will be disregarded
// and can be set to NULL
// if using EU868 on ABP in TTN, you need to set the SF for RX2 window manually
/*
node.rx2.drMax = 3;
*/
// on EEPROM-enabled boards, after the device has been activated,
// the session can be restored without rejoining after device power cycle
// this is intrinsically done when calling `beginABP()` with the same keys
// in that case, the function will not need to transmit a JoinRequest
// to start a LoRaWAN v1.0 session,
// the user can remove the fNwkSIntKey and sNwkSIntKey
/*
state = node.beginABP(devAddr, nwkSKey, appSKey);
*/
// start the device by directly providing the encryption keys and device address
Serial.print(F("[LoRaWAN] Attempting over-the-air activation ... "));
state = node.beginABP(devAddr, nwkSKey, appSKey, fNwkSIntKey, sNwkSIntKey);
if(state >= RADIOLIB_ERR_NONE) {
Serial.println(F("success!"));
} else {
Serial.print(F("failed, code "));
Serial.println(state);
while(true);
}
}
// counter to keep track of transmitted packets
int count = 0;
void loop() {
// send uplink to port 10
Serial.print(F("[LoRaWAN] Sending uplink packet ... "));
String strUp = "Hello!" + String(count++);
String strDown;
int state = node.sendReceive(strUp, 10, strDown);
if(state == RADIOLIB_ERR_NONE) {
Serial.println(F("received a downlink!"));
// print data of the packet (if there are any)
Serial.print(F("[LoRaWAN] Data:\t\t"));
if(strDown.length() > 0) {
Serial.println(strDown);
} else {
Serial.println(F("<MAC commands only>"));
}
// print RSSI (Received Signal Strength Indicator)
Serial.print(F("[LoRaWAN] RSSI:\t\t"));
Serial.print(radio.getRSSI());
Serial.println(F(" dBm"));
// print SNR (Signal-to-Noise Ratio)
Serial.print(F("[LoRaWAN] SNR:\t\t"));
Serial.print(radio.getSNR());
Serial.println(F(" dB"));
// print frequency error
Serial.print(F("[LoRaWAN] Frequency error:\t"));
Serial.print(radio.getFrequencyError());
Serial.println(F(" Hz"));
} else if(state == RADIOLIB_ERR_RX_TIMEOUT) {
Serial.println(F("no downlink!"));
} else {
Serial.print(F("failed, code "));
Serial.println(state);
}
// on EEPROM enabled boards, you should save the current session
// by calling "saveSession" which allows retrieving the session after reboot or deepsleep
node.saveSession();
// wait before sending another packet
uint32_t minimumDelay = 60000; // try to send once every minute
uint32_t interval = node.timeUntilUplink(); // calculate minimum duty cycle delay (per law!)
uint32_t delayMs = max(interval, minimumDelay); // cannot send faster than duty cycle allows
delay(delayMs);
}