RadioLibSmol/src/modules/SX128x/SX1280.cpp

184 lines
5.5 KiB
C++

#include "SX1280.h"
#include <string.h>
#if !RADIOLIB_EXCLUDE_SX128X
SX1280::SX1280(Module* mod) : SX1281(mod) {
}
int16_t SX1280::range(bool master, uint32_t addr, uint16_t calTable[3][6]) {
// start ranging
int16_t state = startRanging(master, addr, calTable);
RADIOLIB_ASSERT(state);
// wait until ranging is finished
Module* mod = this->getMod();
RadioLibTime_t start = mod->hal->millis();
while(!mod->hal->digitalRead(mod->getIrq())) {
mod->hal->yield();
if(mod->hal->millis() - start > 10000) {
clearIrqStatus();
standby();
return(RADIOLIB_ERR_RANGING_TIMEOUT);
}
}
// clear interrupt flags
state = clearIrqStatus();
RADIOLIB_ASSERT(state);
// set mode to standby
state = standby();
return(state);
}
int16_t SX1280::startRanging(bool master, uint32_t addr, uint16_t calTable[3][6]) {
// check active modem
uint8_t modem = getPacketType();
if(!((modem == RADIOLIB_SX128X_PACKET_TYPE_LORA) || (modem == RADIOLIB_SX128X_PACKET_TYPE_RANGING))) {
return(RADIOLIB_ERR_WRONG_MODEM);
}
// set mode to standby
int16_t state = standby();
RADIOLIB_ASSERT(state);
// ensure modem is set to ranging
if(modem == RADIOLIB_SX128X_PACKET_TYPE_LORA) {
state = setPacketType(RADIOLIB_SX128X_PACKET_TYPE_RANGING);
RADIOLIB_ASSERT(state);
}
// set modulation parameters
state = setModulationParams(this->spreadingFactor, this->bandwidth, this->codingRateLoRa);
RADIOLIB_ASSERT(state);
// set packet parameters
state = setPacketParamsLoRa(this->preambleLengthLoRa, this->headerType, this->payloadLen, this->crcLoRa);
RADIOLIB_ASSERT(state);
// check all address bits
if(!master) {
uint8_t regValue;
state = readRegister(RADIOLIB_SX128X_REG_SLAVE_RANGING_ADDRESS_WIDTH, &regValue, 1);
RADIOLIB_ASSERT(state);
regValue &= 0b00111111;
regValue |= 0b11000000;
state = writeRegister(RADIOLIB_SX128X_REG_SLAVE_RANGING_ADDRESS_WIDTH, &regValue, 1);
RADIOLIB_ASSERT(state);
}
// set remaining parameter values
uint32_t addrReg = RADIOLIB_SX128X_REG_SLAVE_RANGING_ADDRESS_BYTE_3;
uint32_t irqMask = RADIOLIB_SX128X_IRQ_RANGING_SLAVE_RESP_DONE | RADIOLIB_SX128X_IRQ_RANGING_SLAVE_REQ_DISCARD;
uint32_t irqDio1 = RADIOLIB_SX128X_IRQ_RANGING_SLAVE_RESP_DONE;
if(master) {
addrReg = RADIOLIB_SX128X_REG_MASTER_RANGING_ADDRESS_BYTE_3;
irqMask = RADIOLIB_SX128X_IRQ_RANGING_MASTER_RES_VALID | RADIOLIB_SX128X_IRQ_RANGING_MASTER_TIMEOUT;
irqDio1 = RADIOLIB_SX128X_IRQ_RANGING_MASTER_RES_VALID;
}
// set ranging address
uint8_t addrBuff[] = { (uint8_t)((addr >> 24) & 0xFF), (uint8_t)((addr >> 16) & 0xFF), (uint8_t)((addr >> 8) & 0xFF), (uint8_t)(addr & 0xFF) };
state = writeRegister(addrReg, addrBuff, 4);
RADIOLIB_ASSERT(state);
// set DIO mapping
state = setDioIrqParams(irqMask, irqDio1);
RADIOLIB_ASSERT(state);
// this is the default calibration from AN1200.29
uint16_t calTbl[3][6] = {
{ 10299, 10271, 10244, 10242, 10230, 10246 },
{ 11486, 11474, 11453, 11426, 11417, 11401 },
{ 13308, 13493, 13528, 13515, 13430, 13376 }
};
// check if user provided some custom calibration
if(calTable != NULL) {
memcpy(calTbl, calTable, sizeof(calTbl));
}
// set calibration values
uint8_t index = (this->spreadingFactor >> 4) - 5;
uint16_t val = 0;
switch(this->bandwidth) {
case(RADIOLIB_SX128X_LORA_BW_406_25):
val = calTbl[0][index];
break;
case(RADIOLIB_SX128X_LORA_BW_812_50):
val = calTbl[1][index];
break;
case(RADIOLIB_SX128X_LORA_BW_1625_00):
val = calTbl[2][index];
break;
default:
return(RADIOLIB_ERR_INVALID_BANDWIDTH);
}
uint8_t calBuff[] = { (uint8_t)((val >> 8) & 0xFF), (uint8_t)(val & 0xFF) };
state = writeRegister(RADIOLIB_SX128X_REG_RANGING_CALIBRATION_MSB, calBuff, 2);
RADIOLIB_ASSERT(state);
// set role and start ranging
if(master) {
state = setRangingRole(RADIOLIB_SX128X_RANGING_ROLE_MASTER);
RADIOLIB_ASSERT(state);
state = setTx(RADIOLIB_SX128X_TX_TIMEOUT_NONE);
RADIOLIB_ASSERT(state);
} else {
state = setRangingRole(RADIOLIB_SX128X_RANGING_ROLE_SLAVE);
RADIOLIB_ASSERT(state);
state = setRx(RADIOLIB_SX128X_RX_TIMEOUT_INF);
RADIOLIB_ASSERT(state);
}
return(state);
}
float SX1280::getRangingResult() {
// set mode to standby XOSC
int16_t state = standby(RADIOLIB_SX128X_STANDBY_XOSC);
RADIOLIB_ASSERT(state);
// enable clock
uint8_t data[4];
state = readRegister(RADIOLIB_SX128X_REG_RANGING_LORA_CLOCK_ENABLE, data, 1);
RADIOLIB_ASSERT(state);
data[0] |= (1 << 1);
state = writeRegister(RADIOLIB_SX128X_REG_RANGING_LORA_CLOCK_ENABLE, data, 1);
RADIOLIB_ASSERT(state);
// set result type to filtered
state = readRegister(RADIOLIB_SX128X_REG_RANGING_TYPE, data, 1);
RADIOLIB_ASSERT(state);
data[0] &= 0xCF;
data[0] |= (1 << 4);
state = writeRegister(RADIOLIB_SX128X_REG_RANGING_TYPE, data, 1);
RADIOLIB_ASSERT(state);
// read the register values
state = readRegister(RADIOLIB_SX128X_REG_RANGING_RESULT_MSB, &data[0], 1);
RADIOLIB_ASSERT(state);
state = readRegister(RADIOLIB_SX128X_REG_RANGING_RESULT_MID, &data[1], 1);
RADIOLIB_ASSERT(state);
state = readRegister(RADIOLIB_SX128X_REG_RANGING_RESULT_LSB, &data[2], 1);
RADIOLIB_ASSERT(state);
// set mode to standby RC
state = standby();
RADIOLIB_ASSERT(state);
// calculate the real result
uint32_t uraw = ((uint32_t)data[0] << 16) | ((uint32_t)data[1] << 8) | data[2];
int32_t raw = (uraw & ((1UL << 23) - 1)) | (uraw >> 23 << 31);
return((float)raw * 150.0 / (4.096 * this->bandwidthKhz));
}
#endif