RadioLibSmol/src/modules/CC1101.cpp
2019-11-12 17:56:36 +01:00

748 lines
19 KiB
C++

#include "CC1101.h"
CC1101::CC1101(Module* module) : PhysicalLayer(CC1101_CRYSTAL_FREQ, CC1101_DIV_EXPONENT, CC1101_MAX_PACKET_LENGTH) {
_mod = module;
_packetLengthQueried = false;
_packetLengthConfig = CC1101_LENGTH_CONFIG_VARIABLE;
_syncWordLength = CC1101_DEFAULT_SYNC_WORD_LENGTH;
}
int16_t CC1101::begin(float freq, float br, float rxBw, float freqDev, int8_t power) {
// set module properties
_mod->SPIreadCommand = CC1101_CMD_READ;
_mod->SPIwriteCommand = CC1101_CMD_WRITE;
_mod->init(USE_SPI, INT_0);
// try to find the CC1101 chip
uint8_t i = 0;
bool flagFound = false;
while((i < 10) && !flagFound) {
uint8_t version = SPIreadRegister(CC1101_REG_VERSION);
if(version == 0x14) {
flagFound = true;
} else {
#ifdef RADIOLIB_DEBUG
RADIOLIB_DEBUG_PRINT(F("CC1101 not found! ("));
RADIOLIB_DEBUG_PRINT(i + 1);
RADIOLIB_DEBUG_PRINT(F(" of 10 tries) CC1101_REG_VERSION == "));
char buffHex[7];
sprintf(buffHex, "0x%04X", version);
RADIOLIB_DEBUG_PRINT(buffHex);
RADIOLIB_DEBUG_PRINT(F(", expected 0x0014"));
RADIOLIB_DEBUG_PRINTLN();
#endif
delay(1000);
i++;
}
}
if(!flagFound) {
RADIOLIB_DEBUG_PRINTLN(F("No CC1101 found!"));
SPI.end();
return(ERR_CHIP_NOT_FOUND);
} else {
RADIOLIB_DEBUG_PRINTLN(F("Found CC1101! (match by CC1101_REG_VERSION == 0x14)"));
}
// configure settings not accessible by API
int16_t state = config();
if(state != ERR_NONE) {
return(state);
}
// configure publicly accessible settings
state = setFrequency(freq);
if(state != ERR_NONE) {
return(state);
}
// configure bitrate
state = setBitRate(br);
if(state != ERR_NONE) {
return(state);
}
// configure default RX bandwidth
state = setRxBandwidth(rxBw);
if(state != ERR_NONE) {
return(state);
}
// configure default frequency deviation
state = setFrequencyDeviation(freqDev);
if(state != ERR_NONE) {
return(state);
}
// configure default TX output power
state = setOutputPower(power);
if(state != ERR_NONE) {
return(state);
}
// set default packet length mode
state = variablePacketLengthMode();
if (state != ERR_NONE) {
return(state);
}
// flush FIFOs
SPIsendCommand(CC1101_CMD_FLUSH_RX);
SPIsendCommand(CC1101_CMD_FLUSH_TX);
return(state);
}
int16_t CC1101::transmit(uint8_t* data, size_t len, uint8_t addr) {
// start transmission
int16_t state = startTransmit(data, len, addr);
if(state != ERR_NONE) {
return(state);
}
// wait for transmission start
while(!digitalRead(_mod->getInt0()));
// wait for transmission end
while(digitalRead(_mod->getInt0()));
// set mode to standby
standby();
// flush Tx FIFO
SPIsendCommand(CC1101_CMD_FLUSH_TX);
return(state);
}
int16_t CC1101::receive(uint8_t* data, size_t len) {
// start reception
int16_t state = startReceive();
if(state != ERR_NONE) {
return(state);
}
// wait for sync word
while(!digitalRead(_mod->getInt0()));
// wait for packet end
while(digitalRead(_mod->getInt0()));
// read packet data
return(readData(data, len));
}
int16_t CC1101::standby() {
SPIsendCommand(CC1101_CMD_IDLE);
return(ERR_NONE);
}
int16_t CC1101::transmitDirect(uint32_t frf) {
// user requested to start transmitting immediately (required for RTTY)
if(frf != 0) {
SPIwriteRegister(CC1101_REG_FREQ2, (frf & 0xFF0000) >> 16);
SPIwriteRegister(CC1101_REG_FREQ1, (frf & 0x00FF00) >> 8);
SPIwriteRegister(CC1101_REG_FREQ0, frf & 0x0000FF);
SPIsendCommand(CC1101_CMD_TX);
}
// activate direct mode
int16_t state = directMode();
if(state != ERR_NONE) {
return(state);
}
// start transmitting
SPIsendCommand(CC1101_CMD_TX);
return(state);
}
int16_t CC1101::receiveDirect() {
// activate direct mode
int16_t state = directMode();
if(state != ERR_NONE) {
return(state);
}
// start receiving
SPIsendCommand(CC1101_CMD_RX);
return(ERR_NONE);
}
int16_t CC1101::packetMode() {
int16_t state = SPIsetRegValue(CC1101_REG_PKTCTRL1, CC1101_CRC_AUTOFLUSH_OFF | CC1101_APPEND_STATUS_ON | CC1101_ADR_CHK_NONE, 3, 0);
state |= SPIsetRegValue(CC1101_REG_PKTCTRL0, CC1101_WHITE_DATA_OFF | CC1101_PKT_FORMAT_NORMAL, 6, 4);
state |= SPIsetRegValue(CC1101_REG_PKTCTRL0, CC1101_CRC_ON | _packetLengthConfig, 2, 0);
return(state);
}
void CC1101::setGdo0Action(void (*func)(void), uint8_t dir) {
attachInterrupt(digitalPinToInterrupt(_mod->getInt0()), func, dir);
}
void CC1101::setGdo2Action(void (*func)(void), uint8_t dir) {
attachInterrupt(digitalPinToInterrupt(_mod->getInt1()), func, dir);
}
int16_t CC1101::startTransmit(uint8_t* data, size_t len, uint8_t addr) {
// check packet length
if(len > CC1101_MAX_PACKET_LENGTH) {
return(ERR_PACKET_TOO_LONG);
}
// set mode to standby
standby();
// flush Tx FIFO
SPIsendCommand(CC1101_CMD_FLUSH_TX);
// set GDO0 mapping
int state = SPIsetRegValue(CC1101_REG_IOCFG0, CC1101_GDOX_SYNC_WORD_SENT_OR_RECEIVED);
if(state != ERR_NONE) {
return(state);
}
// optionally write packet length
if (_packetLengthConfig == CC1101_LENGTH_CONFIG_VARIABLE) {
SPIwriteRegister(CC1101_REG_FIFO, len);
}
// check address filtering
uint8_t filter = SPIgetRegValue(CC1101_REG_PKTCTRL1, 1, 0);
if(filter != CC1101_ADR_CHK_NONE) {
SPIwriteRegister(CC1101_REG_FIFO, addr);
}
// write packet to FIFO
SPIwriteRegisterBurst(CC1101_REG_FIFO, data, len);
// set mode to transmit
SPIsendCommand(CC1101_CMD_TX);
return(state);
}
int16_t CC1101::startReceive() {
// set mode to standby
standby();
// flush Rx FIFO
SPIsendCommand(CC1101_CMD_FLUSH_RX);
// set GDO0 mapping
int state = SPIsetRegValue(CC1101_REG_IOCFG0, CC1101_GDOX_SYNC_WORD_SENT_OR_RECEIVED);
if(state != ERR_NONE) {
return(state);
}
// set mode to receive
SPIsendCommand(CC1101_CMD_RX);
return(state);
}
int16_t CC1101::readData(uint8_t* data, size_t len) {
// get packet length
size_t length = len;
if(len == CC1101_MAX_PACKET_LENGTH) {
length = getPacketLength();
}
// check address filtering
uint8_t filter = SPIgetRegValue(CC1101_REG_PKTCTRL1, 1, 0);
if(filter != CC1101_ADR_CHK_NONE) {
SPIreadRegister(CC1101_REG_FIFO);
}
// read packet data
SPIreadRegisterBurst(CC1101_REG_FIFO, length, data);
// read RSSI byte
_rawRSSI = SPIgetRegValue(CC1101_REG_FIFO);
// read LQI and CRC byte
uint8_t val = SPIgetRegValue(CC1101_REG_FIFO);
_rawLQI = val & 0x7F;
// add terminating null
data[length] = 0;
// flush Rx FIFO
SPIsendCommand(CC1101_CMD_FLUSH_RX);
// clear internal flag so getPacketLength can return the new packet length
_packetLengthQueried = false;
// set mode to standby
standby();
// check CRC
if((val & 0b10000000) == 0b00000000) {
return(ERR_CRC_MISMATCH);
}
return(ERR_NONE);
}
int16_t CC1101::setFrequency(float freq) {
// check allowed frequency range
if(!(((freq > 300.0) && (freq < 348.0)) ||
((freq > 387.0) && (freq < 464.0)) ||
((freq > 779.0) && (freq < 928.0)))) {
return(ERR_INVALID_FREQUENCY);
}
// set mode to standby
SPIsendCommand(CC1101_CMD_IDLE);
//set carrier frequency
uint32_t base = 1;
uint32_t FRF = (freq * (base << 16)) / 26.0;
int16_t state = SPIsetRegValue(CC1101_REG_FREQ2, (FRF & 0xFF0000) >> 16, 7, 0);
state |= SPIsetRegValue(CC1101_REG_FREQ1, (FRF & 0x00FF00) >> 8, 7, 0);
state |= SPIsetRegValue(CC1101_REG_FREQ0, FRF & 0x0000FF, 7, 0);
if(state == ERR_NONE) {
_freq = freq;
}
return(state);
}
int16_t CC1101::setBitRate(float br) {
// check allowed bit rate range
if(!((br >= 0.025) && (br <= 600.0))) {
return(ERR_INVALID_BIT_RATE);
}
// set mode to standby
SPIsendCommand(CC1101_CMD_IDLE);
// calculate exponent and mantisa values
uint8_t e = 0;
uint8_t m = 0;
getExpMant(br * 1000.0, 256, 28, 14, e, m);
// set bit rate value
int16_t state = SPIsetRegValue(CC1101_REG_MDMCFG4, e, 3, 0);
state |= SPIsetRegValue(CC1101_REG_MDMCFG3, m);
return(state);
}
int16_t CC1101::setRxBandwidth(float rxBw) {
// check allowed bandwidth range
if(!((rxBw >= 58.0) && (rxBw <= 812.0))) {
return(ERR_INVALID_RX_BANDWIDTH);
}
// set mode to standby
SPIsendCommand(CC1101_CMD_IDLE);
// calculate exponent and mantisa values
for(int8_t e = 3; e >= 0; e--) {
for(int8_t m = 3; m >= 0; m --) {
float point = (CC1101_CRYSTAL_FREQ * 1000000.0)/(8 * (m + 4) * ((uint32_t)1 << e));
if(abs((rxBw * 1000.0) - point) <= 0.001) {
// set Rx channel filter bandwidth
return(SPIsetRegValue(CC1101_REG_MDMCFG4, (e << 6) | (m << 4), 7, 4));
}
}
}
return(ERR_UNKNOWN);
}
int16_t CC1101::setFrequencyDeviation(float freqDev) {
// set frequency deviation to lowest available setting (required for RTTY)
if(freqDev == 0.0) {
int16_t state = SPIsetRegValue(CC1101_REG_DEVIATN, 0, 6, 4);
state |= SPIsetRegValue(CC1101_REG_DEVIATN, 0, 2, 0);
return(state);
}
// check allowed frequency deviation range
if(!((freqDev >= 1.587) && (freqDev <= 380.8))) {
return(ERR_INVALID_FREQUENCY_DEVIATION);
}
// set mode to standby
SPIsendCommand(CC1101_CMD_IDLE);
// calculate exponent and mantisa values
uint8_t e = 0;
uint8_t m = 0;
getExpMant(freqDev * 1000.0, 8, 17, 7, e, m);
// set frequency deviation value
int16_t state = SPIsetRegValue(CC1101_REG_DEVIATN, (e << 4), 6, 4);
state |= SPIsetRegValue(CC1101_REG_DEVIATN, m, 2, 0);
return(state);
}
int16_t CC1101::setOutputPower(int8_t power) {
// round to the known frequency settings
uint8_t f;
if(_freq < 374.0) {
// 315 MHz
f = 0;
} else if(_freq < 650.5) {
// 434 MHz
f = 1;
} else if(_freq < 891.5) {
// 868 MHz
f = 2;
} else {
// 915 MHz
f = 3;
}
// get raw power setting
uint8_t paTable[8][4] = {{0x12, 0x12, 0x03, 0x03},
{0x0D, 0x0E, 0x0F, 0x0E},
{0x1C, 0x1D, 0x1E, 0x1E},
{0x34, 0x34, 0x27, 0x27},
{0x51, 0x60, 0x50, 0x8E},
{0x85, 0x84, 0x81, 0xCD},
{0xCB, 0xC8, 0xCB, 0xC7},
{0xC2, 0xC0, 0xC2, 0xC0}};
uint8_t powerRaw;
switch(power) {
case -30:
powerRaw = paTable[0][f];
break;
case -20:
powerRaw = paTable[1][f];
break;
case -15:
powerRaw = paTable[2][f];
break;
case -10:
powerRaw = paTable[3][f];
break;
case 0:
powerRaw = paTable[4][f];
break;
case 5:
powerRaw = paTable[5][f];
break;
case 7:
powerRaw = paTable[6][f];
break;
case 10:
powerRaw = paTable[7][f];
break;
default:
return(ERR_INVALID_OUTPUT_POWER);
}
// write raw power setting
return(SPIsetRegValue(CC1101_REG_PATABLE, powerRaw));
}
int16_t CC1101::setSyncWord(uint8_t* syncWord, uint8_t len, uint8_t maxErrBits) {
if(maxErrBits > 1) {
return(ERR_INVALID_SYNC_WORD);
}
// sync word must not contain value 0x00
for(uint8_t i = 0; i < len; i++) {
if(syncWord[i] == 0x00) {
return(ERR_INVALID_SYNC_WORD);
}
}
_syncWordLength = len;
// enable sync word filtering
int16_t state = enableSyncWordFiltering(maxErrBits);
if (state != ERR_NONE) {
return(state);
}
// set sync word register
_mod->SPIwriteRegisterBurst(CC1101_REG_SYNC1, syncWord, len);
return(ERR_NONE);
}
int16_t CC1101::setSyncWord(uint8_t syncH, uint8_t syncL, uint8_t maxErrBits) {
uint8_t syncWord[] = { syncH, syncL };
return(setSyncWord(syncWord, sizeof(syncWord), maxErrBits));
}
int16_t CC1101::setNodeAddress(uint8_t nodeAddr, uint8_t numBroadcastAddrs) {
if(!(numBroadcastAddrs > 0) && (numBroadcastAddrs <= 2)) {
return(ERR_INVALID_NUM_BROAD_ADDRS);
}
// enable address filtering
int16_t state = SPIsetRegValue(CC1101_REG_PKTCTRL1, numBroadcastAddrs + 0x01, 1, 0);
if(state != ERR_NONE) {
return(state);
}
// set node address
return(SPIsetRegValue(CC1101_REG_ADDR, nodeAddr));
}
int16_t CC1101::disableAddressFiltering() {
// disable address filtering
int16_t state = _mod->SPIsetRegValue(CC1101_REG_PKTCTRL1, CC1101_ADR_CHK_NONE, 1, 0);
if(state != ERR_NONE) {
return(state);
}
// set node address to default (0x00)
return(SPIsetRegValue(CC1101_REG_ADDR, 0x00));
}
float CC1101::getRSSI() {
float rssi;
if(_rawRSSI >= 128) {
rssi = (((float)_rawRSSI - 256.0)/2.0) - 74.0;
} else {
rssi = (((float)_rawRSSI)/2.0) - 74.0;
}
return(rssi);
}
uint8_t CC1101::getLQI() {
return(_rawLQI);
}
size_t CC1101::getPacketLength(bool update) {
if(!_packetLengthQueried && update) {
if (_packetLengthConfig == CC1101_LENGTH_CONFIG_VARIABLE) {
_packetLength = _mod->SPIreadRegister(CC1101_REG_FIFO);
} else {
_packetLength = _mod->SPIreadRegister(CC1101_REG_PKTLEN);
}
_packetLengthQueried = true;
}
return(_packetLength);
}
int16_t CC1101::fixedPacketLengthMode(uint8_t len) {
if (len > CC1101_MAX_PACKET_LENGTH) {
return(ERR_PACKET_TOO_LONG);
}
// set to fixed packet length
int16_t state = SPIsetRegValue(CC1101_REG_PKTCTRL0, CC1101_LENGTH_CONFIG_FIXED, 1, 0);
if (state != ERR_NONE) {
return(state);
}
// set length to register
state = SPIsetRegValue(CC1101_REG_PKTLEN, len);
if (state != ERR_NONE) {
return(state);
}
// all went well: cache the reg value
_packetLengthConfig = CC1101_LENGTH_CONFIG_FIXED;
return(state);
}
int16_t CC1101::variablePacketLengthMode(uint8_t maxLen) {
if (maxLen > CC1101_MAX_PACKET_LENGTH) {
return(ERR_PACKET_TOO_LONG);
}
// set to fixed packet length
int16_t state = SPIsetRegValue(CC1101_REG_PKTCTRL0, CC1101_LENGTH_CONFIG_VARIABLE, 1, 0);
if (state != ERR_NONE) {
return(state);
}
// set max length to register
state = SPIsetRegValue(CC1101_REG_PKTLEN, maxLen);
if (state != ERR_NONE) {
return(state);
}
// all went well: cache the reg value
_packetLengthConfig = CC1101_LENGTH_CONFIG_VARIABLE;
return(state);
}
int16_t CC1101::enableSyncWordFiltering(uint8_t maxErrBits) {
if (maxErrBits > 1) {
return(ERR_INVALID_SYNC_WORD);
}
if (maxErrBits == 0) {
if (_syncWordLength == 1) {
// in 16 bit sync word, expect all 16 bits
return(SPIsetRegValue(CC1101_REG_MDMCFG2, CC1101_SYNC_MODE_16_16, 2, 0));
} else if (_syncWordLength == 2) {
// there's no 32 of 32 case, so we resort to 30 of 32 bits required
return(SPIsetRegValue(CC1101_REG_MDMCFG2, CC1101_SYNC_MODE_30_32, 2, 0));
}
}
if (maxErrBits == 1) {
if (_syncWordLength == 1) {
// in 16 bit sync word, expect at least 15 bits
return(SPIsetRegValue(CC1101_REG_MDMCFG2, CC1101_SYNC_MODE_15_16, 2, 0));
} else if (_syncWordLength == 2) {
// in 32 bits sync word (16 + 16), expect 30 of 32 to match
return(SPIsetRegValue(CC1101_REG_MDMCFG2, CC1101_SYNC_MODE_30_32, 2, 0));
}
}
return(ERR_NONE);
}
int16_t CC1101::disableSyncWordFiltering() {
return(SPIsetRegValue(CC1101_REG_MDMCFG2, CC1101_SYNC_MODE_NONE, 2, 0));
}
int16_t CC1101::enableCrcFiltering() {
return(SPIsetRegValue(CC1101_REG_PKTCTRL0, CC1101_CRC_ON, 2, 2));
}
int16_t CC1101::disableCrcFiltering() {
return(SPIsetRegValue(CC1101_REG_PKTCTRL0, CC1101_CRC_OFF, 2, 2));
}
int16_t CC1101::promiscuousMode(bool promiscuous) {
int16_t state = ERR_NONE;
if (_promiscuous == promiscuous) {
return(state);
}
if (promiscuous == true) {
// disable preamble and sync word filtering and insertion
state = disableSyncWordFiltering();
if (state != ERR_NONE) {
return(state);
}
// disable CRC filtering
state = disableCrcFiltering();
} else {
// enable preamble and sync word filtering and insertion
state = enableSyncWordFiltering();
if (state != ERR_NONE) {
return(state);
}
// enable CRC filtering
state = enableCrcFiltering();
}
return(state);
}
int16_t CC1101::config() {
// enable automatic frequency synthesizer calibration
int16_t state = SPIsetRegValue(CC1101_REG_MCSM0, CC1101_FS_AUTOCAL_IDLE_TO_RXTX, 5, 4);
if(state != ERR_NONE) {
return(state);
}
// set packet mode
state = packetMode();
return(state);
}
int16_t CC1101::directMode() {
// set mode to standby
SPIsendCommand(CC1101_CMD_IDLE);
// set GDO0 and GDO2 mapping
int16_t state = SPIsetRegValue(CC1101_REG_IOCFG0, CC1101_GDOX_SERIAL_CLOCK , 5, 0);
state |= SPIsetRegValue(CC1101_REG_IOCFG2, CC1101_GDOX_SERIAL_DATA_SYNC , 5, 0);
// set continuous mode
state |= SPIsetRegValue(CC1101_REG_PKTCTRL0, CC1101_PKT_FORMAT_SYNCHRONOUS, 5, 4);
return(state);
}
void CC1101::getExpMant(float target, uint16_t mantOffset, uint8_t divExp, uint8_t expMax, uint8_t& exp, uint8_t& mant) {
// get table origin point (exp = 0, mant = 0)
float origin = (mantOffset * CC1101_CRYSTAL_FREQ * 1000000.0)/((uint32_t)1 << divExp);
// iterate over possible exponent values
for(int8_t e = expMax; e >= 0; e--) {
// get table column start value (exp = e, mant = 0);
float intervalStart = ((uint32_t)1 << e) * origin;
// check if target value is in this column
if(target >= intervalStart) {
// save exponent value
exp = e;
// calculate size of step between table rows
float stepSize = intervalStart/(float)mantOffset;
// get target point position (exp = e, mant = m)
mant = ((target - intervalStart) / stepSize);
// we only need the first match, terminate
return;
}
}
}
int16_t CC1101::SPIgetRegValue(uint8_t reg, uint8_t msb, uint8_t lsb) {
// status registers require special command
if(reg > CC1101_REG_TEST0) {
reg |= CC1101_CMD_ACCESS_STATUS_REG;
}
return(_mod->SPIgetRegValue(reg, msb, lsb));
}
int16_t CC1101::SPIsetRegValue(uint8_t reg, uint8_t value, uint8_t msb, uint8_t lsb, uint8_t checkInterval) {
// status registers require special command
if(reg > CC1101_REG_TEST0) {
reg |= CC1101_CMD_ACCESS_STATUS_REG;
}
return(_mod->SPIsetRegValue(reg, value, msb, lsb, checkInterval));
}
void CC1101::SPIreadRegisterBurst(uint8_t reg, uint8_t numBytes, uint8_t* inBytes) {
_mod->SPIreadRegisterBurst(reg | CC1101_CMD_BURST, numBytes, inBytes);
}
uint8_t CC1101::SPIreadRegister(uint8_t reg) {
// status registers require special command
if(reg > CC1101_REG_TEST0) {
reg |= CC1101_CMD_ACCESS_STATUS_REG;
}
return(_mod->SPIreadRegister(reg));
}
void CC1101::SPIwriteRegister(uint8_t reg, uint8_t data) {
// status registers require special command
if(reg > CC1101_REG_TEST0) {
reg |= CC1101_CMD_ACCESS_STATUS_REG;
}
return(_mod->SPIwriteRegister(reg, data));
}
void CC1101::SPIwriteRegisterBurst(uint8_t reg, uint8_t* data, size_t len) {
_mod->SPIwriteRegisterBurst(reg | CC1101_CMD_BURST, data, len);
}
void CC1101::SPIsendCommand(uint8_t cmd) {
digitalWrite(_mod->getCs(), LOW);
SPI.beginTransaction(SPISettings(2000000, MSBFIRST, SPI_MODE0));
SPI.transfer(cmd);
SPI.endTransaction();
digitalWrite(_mod->getCs(), HIGH);
}