
This defines operation modes (IDLE, RX and TX) and allows defining up to to three pins to be controlled. For each mode a value can be specified for each pin a table. Compared to the previous handling, this: - Allows up to three pins instead of only two. - Gives more control over output pin values (e.g. to simply change polarity or support more complex control logic). In addition, the modes are treated as opaque by the Module code, allowing radio classes to define their own modes if needed. Some notes regarding the implementation: - The number of pins is limited at three, since most boards seem to need only two pins and only the Nucleo STM32WL55 board needs three. If more pins are needed in the future, the setRfSwitchTable() can be overloaded to accept either a 3-element or e.g. 4-element pins array, to allow new and old code to work as-is. Note that there is a RFSWITCH_MAX_PINS constant defined, but it is not recommended for sketches to use this constant when defining a rfswitch pins array, to prevent issues when this value is ever increased and such an array gets extra zero elements (that will be interpreted as pin 0). Note that this is not a problem for the RfSwitchMode_t values array, since any extra values in there will only be used if a valid pin was set in the pins array. - The pins array is passed by reference, so the compiler complains if the array passed is not the expected size. Since a reference to an array without a length is not supported (at least not by the gcc 7 used by the AVR core - gcc 10 for STM32 seems to accept it), the table array is passed as a pointer instead (but because arrays and pointers are reasonably interchangeable, the caller does not see the difference). - The existing setRfSwitchPins() method is still supported as before. Internally it creates a table with the right values and pins and passes those to setRfSwitchTable. - For easier review, this commit does not modify all calls to setRfSwitchState() in all radio modules yet, but has a compatibility wrapper to delay this change until the next commit. Similarly, the setRfSwitchTable() method is now defined on Module only, a wrapper for it will be defined in all radios that already have the setRfSwitchPins() wrapper in another commit. - To allow future radios to define any number of modes, the modes table does not have a fixed length, but instead is terminated by a special value. This is a bit fragile (if the terminator is omitted, the code will read past the end of the array), but rather flexible. One alternative to this approach would be to make setRfSwitchTable a template that deduces the array size from a template argument and then stores the size explicitly, but using templates probably reduces code clarity.
600 lines
15 KiB
C++
600 lines
15 KiB
C++
#include "Module.h"
|
|
|
|
#if defined(RADIOLIB_BUILD_ARDUINO)
|
|
|
|
// we need this to emulate tone() on mbed Arduino boards
|
|
#if defined(RADIOLIB_MBED_TONE_OVERRIDE)
|
|
#include "mbed.h"
|
|
mbed::PwmOut *pwmPin = NULL;
|
|
#endif
|
|
|
|
Module::Module(RADIOLIB_PIN_TYPE cs, RADIOLIB_PIN_TYPE irq, RADIOLIB_PIN_TYPE rst, RADIOLIB_PIN_TYPE gpio):
|
|
_cs(cs),
|
|
_irq(irq),
|
|
_rst(rst),
|
|
_gpio(gpio)
|
|
{
|
|
_spi = &RADIOLIB_DEFAULT_SPI;
|
|
_initInterface = true;
|
|
|
|
// this is Arduino build, pre-set callbacks
|
|
setCb_pinMode(::pinMode);
|
|
setCb_digitalRead(::digitalRead);
|
|
setCb_digitalWrite(::digitalWrite);
|
|
#if !defined(RADIOLIB_TONE_UNSUPPORTED)
|
|
setCb_tone(::tone);
|
|
setCb_noTone(::noTone);
|
|
#endif
|
|
setCb_attachInterrupt(::attachInterrupt);
|
|
setCb_detachInterrupt(::detachInterrupt);
|
|
#if !defined(RADIOLIB_YIELD_UNSUPPORTED)
|
|
setCb_yield(::yield);
|
|
#endif
|
|
setCb_delay(::delay);
|
|
setCb_delayMicroseconds(::delayMicroseconds);
|
|
setCb_millis(::millis);
|
|
setCb_micros(::micros);
|
|
setCb_pulseIn(::pulseIn);
|
|
setCb_SPIbegin(&Module::SPIbegin);
|
|
setCb_SPIbeginTransaction(&Module::beginTransaction);
|
|
setCb_SPItransfer(&Module::transfer);
|
|
setCb_SPIendTransaction(&Module::endTransaction);
|
|
setCb_SPIend(&Module::end);
|
|
}
|
|
|
|
Module::Module(RADIOLIB_PIN_TYPE cs, RADIOLIB_PIN_TYPE irq, RADIOLIB_PIN_TYPE rst, RADIOLIB_PIN_TYPE gpio, SPIClass& spi, SPISettings spiSettings):
|
|
_cs(cs),
|
|
_irq(irq),
|
|
_rst(rst),
|
|
_gpio(gpio),
|
|
_spiSettings(spiSettings)
|
|
{
|
|
_spi = &spi;
|
|
_initInterface = false;
|
|
|
|
// this is Arduino build, pre-set callbacks
|
|
setCb_pinMode(::pinMode);
|
|
setCb_digitalRead(::digitalRead);
|
|
setCb_digitalWrite(::digitalWrite);
|
|
#if !defined(RADIOLIB_TONE_UNSUPPORTED)
|
|
setCb_tone(::tone);
|
|
setCb_noTone(::noTone);
|
|
#endif
|
|
setCb_attachInterrupt(::attachInterrupt);
|
|
setCb_detachInterrupt(::detachInterrupt);
|
|
#if !defined(RADIOLIB_YIELD_UNSUPPORTED)
|
|
setCb_yield(::yield);
|
|
#endif
|
|
setCb_delay(::delay);
|
|
setCb_delayMicroseconds(::delayMicroseconds);
|
|
setCb_millis(::millis);
|
|
setCb_micros(::micros);
|
|
setCb_pulseIn(::pulseIn);
|
|
setCb_SPIbegin(&Module::SPIbegin);
|
|
setCb_SPIbeginTransaction(&Module::beginTransaction);
|
|
setCb_SPItransfer(&Module::transfer);
|
|
setCb_SPIendTransaction(&Module::endTransaction);
|
|
setCb_SPIend(&Module::end);
|
|
}
|
|
#else
|
|
|
|
Module::Module(RADIOLIB_PIN_TYPE cs, RADIOLIB_PIN_TYPE irq, RADIOLIB_PIN_TYPE rst, RADIOLIB_PIN_TYPE gpio):
|
|
_cs(cs),
|
|
_irq(irq),
|
|
_rst(rst),
|
|
_gpio(gpio)
|
|
{
|
|
// not an Arduino build, it's up to the user to set all callbacks
|
|
}
|
|
|
|
#endif
|
|
|
|
Module::Module(const Module& mod) {
|
|
*this = mod;
|
|
}
|
|
|
|
Module& Module::operator=(const Module& mod) {
|
|
this->SPIreadCommand = mod.SPIreadCommand;
|
|
this->SPIwriteCommand = mod.SPIwriteCommand;
|
|
this->_cs = mod.getCs();
|
|
this->_irq = mod.getIrq();
|
|
this->_rst = mod.getRst();
|
|
this->_gpio = mod.getGpio();
|
|
|
|
return(*this);
|
|
}
|
|
|
|
void Module::init() {
|
|
this->pinMode(_cs, OUTPUT);
|
|
this->digitalWrite(_cs, HIGH);
|
|
#if defined(RADIOLIB_BUILD_ARDUINO)
|
|
if(_initInterface) {
|
|
(this->*cb_SPIbegin)();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void Module::term() {
|
|
// stop hardware interfaces (if they were initialized by the library)
|
|
#if defined(RADIOLIB_BUILD_ARDUINO)
|
|
if(!_initInterface) {
|
|
return;
|
|
}
|
|
|
|
if(_spi != nullptr) {
|
|
this->SPIend();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
int16_t Module::SPIgetRegValue(uint8_t reg, uint8_t msb, uint8_t lsb) {
|
|
if((msb > 7) || (lsb > 7) || (lsb > msb)) {
|
|
return(RADIOLIB_ERR_INVALID_BIT_RANGE);
|
|
}
|
|
|
|
uint8_t rawValue = SPIreadRegister(reg);
|
|
uint8_t maskedValue = rawValue & ((0b11111111 << lsb) & (0b11111111 >> (7 - msb)));
|
|
return(maskedValue);
|
|
}
|
|
|
|
int16_t Module::SPIsetRegValue(uint8_t reg, uint8_t value, uint8_t msb, uint8_t lsb, uint8_t checkInterval, uint8_t checkMask) {
|
|
if((msb > 7) || (lsb > 7) || (lsb > msb)) {
|
|
return(RADIOLIB_ERR_INVALID_BIT_RANGE);
|
|
}
|
|
|
|
uint8_t currentValue = SPIreadRegister(reg);
|
|
uint8_t mask = ~((0b11111111 << (msb + 1)) | (0b11111111 >> (8 - lsb)));
|
|
uint8_t newValue = (currentValue & ~mask) | (value & mask);
|
|
SPIwriteRegister(reg, newValue);
|
|
|
|
#if defined(RADIOLIB_SPI_PARANOID)
|
|
// check register value each millisecond until check interval is reached
|
|
// some registers need a bit of time to process the change (e.g. SX127X_REG_OP_MODE)
|
|
uint32_t start = this->micros();
|
|
uint8_t readValue = 0x00;
|
|
while(this->micros() - start < (checkInterval * 1000)) {
|
|
readValue = SPIreadRegister(reg);
|
|
if((readValue & checkMask) == (newValue & checkMask)) {
|
|
// check passed, we can stop the loop
|
|
return(RADIOLIB_ERR_NONE);
|
|
}
|
|
}
|
|
|
|
// check failed, print debug info
|
|
RADIOLIB_DEBUG_PRINTLN();
|
|
RADIOLIB_DEBUG_PRINT(F("address:\t0x"));
|
|
RADIOLIB_DEBUG_PRINTLN(reg, HEX);
|
|
RADIOLIB_DEBUG_PRINT(F("bits:\t\t"));
|
|
RADIOLIB_DEBUG_PRINT(msb);
|
|
RADIOLIB_DEBUG_PRINT(' ');
|
|
RADIOLIB_DEBUG_PRINTLN(lsb);
|
|
RADIOLIB_DEBUG_PRINT(F("value:\t\t0b"));
|
|
RADIOLIB_DEBUG_PRINTLN(value, BIN);
|
|
RADIOLIB_DEBUG_PRINT(F("current:\t0b"));
|
|
RADIOLIB_DEBUG_PRINTLN(currentValue, BIN);
|
|
RADIOLIB_DEBUG_PRINT(F("mask:\t\t0b"));
|
|
RADIOLIB_DEBUG_PRINTLN(mask, BIN);
|
|
RADIOLIB_DEBUG_PRINT(F("new:\t\t0b"));
|
|
RADIOLIB_DEBUG_PRINTLN(newValue, BIN);
|
|
RADIOLIB_DEBUG_PRINT(F("read:\t\t0b"));
|
|
RADIOLIB_DEBUG_PRINTLN(readValue, BIN);
|
|
RADIOLIB_DEBUG_PRINTLN();
|
|
|
|
return(RADIOLIB_ERR_SPI_WRITE_FAILED);
|
|
#else
|
|
return(RADIOLIB_ERR_NONE);
|
|
#endif
|
|
}
|
|
|
|
void Module::SPIreadRegisterBurst(uint8_t reg, uint8_t numBytes, uint8_t* inBytes) {
|
|
SPItransfer(SPIreadCommand, reg, NULL, inBytes, numBytes);
|
|
}
|
|
|
|
uint8_t Module::SPIreadRegister(uint8_t reg) {
|
|
uint8_t resp = 0;
|
|
SPItransfer(SPIreadCommand, reg, NULL, &resp, 1);
|
|
return(resp);
|
|
}
|
|
|
|
void Module::SPIwriteRegisterBurst(uint8_t reg, uint8_t* data, uint8_t numBytes) {
|
|
SPItransfer(SPIwriteCommand, reg, data, NULL, numBytes);
|
|
}
|
|
|
|
void Module::SPIwriteRegister(uint8_t reg, uint8_t data) {
|
|
SPItransfer(SPIwriteCommand, reg, &data, NULL, 1);
|
|
}
|
|
|
|
void Module::SPItransfer(uint8_t cmd, uint8_t reg, uint8_t* dataOut, uint8_t* dataIn, uint8_t numBytes) {
|
|
// start SPI transaction
|
|
this->SPIbeginTransaction();
|
|
|
|
// pull CS low
|
|
this->digitalWrite(_cs, LOW);
|
|
|
|
// send SPI register address with access command
|
|
this->SPItransfer(reg | cmd);
|
|
#if defined(RADIOLIB_VERBOSE)
|
|
if(cmd == SPIwriteCommand) {
|
|
RADIOLIB_VERBOSE_PRINT('W');
|
|
} else if(cmd == SPIreadCommand) {
|
|
RADIOLIB_VERBOSE_PRINT('R');
|
|
}
|
|
RADIOLIB_VERBOSE_PRINT('\t')
|
|
RADIOLIB_VERBOSE_PRINT(reg, HEX);
|
|
RADIOLIB_VERBOSE_PRINT('\t');
|
|
#endif
|
|
|
|
// send data or get response
|
|
if(cmd == SPIwriteCommand) {
|
|
if(dataOut != NULL) {
|
|
for(size_t n = 0; n < numBytes; n++) {
|
|
this->SPItransfer(dataOut[n]);
|
|
RADIOLIB_VERBOSE_PRINT(dataOut[n], HEX);
|
|
RADIOLIB_VERBOSE_PRINT('\t');
|
|
}
|
|
}
|
|
} else if (cmd == SPIreadCommand) {
|
|
if(dataIn != NULL) {
|
|
for(size_t n = 0; n < numBytes; n++) {
|
|
dataIn[n] = this->SPItransfer(0x00);
|
|
RADIOLIB_VERBOSE_PRINT(dataIn[n], HEX);
|
|
RADIOLIB_VERBOSE_PRINT('\t');
|
|
}
|
|
}
|
|
}
|
|
RADIOLIB_VERBOSE_PRINTLN();
|
|
|
|
// release CS
|
|
this->digitalWrite(_cs, HIGH);
|
|
|
|
// end SPI transaction
|
|
this->SPIendTransaction();
|
|
}
|
|
|
|
void Module::waitForMicroseconds(uint32_t start, uint32_t len) {
|
|
#if defined(RADIOLIB_INTERRUPT_TIMING)
|
|
(void)start;
|
|
if((this->TimerSetupCb != nullptr) && (len != this->_prevTimingLen)) {
|
|
_prevTimingLen = len;
|
|
this->TimerSetupCb(len);
|
|
}
|
|
this->TimerFlag = false;
|
|
while(!this->TimerFlag) {
|
|
this->yield();
|
|
}
|
|
#else
|
|
while(this->micros() - start < len) {
|
|
this->yield();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void Module::pinMode(RADIOLIB_PIN_TYPE pin, RADIOLIB_PIN_MODE mode) {
|
|
if((pin == RADIOLIB_NC) || (cb_pinMode == nullptr)) {
|
|
return;
|
|
}
|
|
cb_pinMode(pin, mode);
|
|
}
|
|
|
|
void Module::digitalWrite(RADIOLIB_PIN_TYPE pin, RADIOLIB_PIN_STATUS value) {
|
|
if((pin == RADIOLIB_NC) || (cb_digitalWrite == nullptr)) {
|
|
return;
|
|
}
|
|
cb_digitalWrite(pin, value);
|
|
}
|
|
|
|
RADIOLIB_PIN_STATUS Module::digitalRead(RADIOLIB_PIN_TYPE pin) {
|
|
if((pin == RADIOLIB_NC) || (cb_digitalRead == nullptr)) {
|
|
return((RADIOLIB_PIN_STATUS)0);
|
|
}
|
|
return(cb_digitalRead(pin));
|
|
}
|
|
|
|
#if defined(ESP32)
|
|
// we need to cache the previous tone value for emulation on ESP32
|
|
int32_t prev = -1;
|
|
#endif
|
|
|
|
void Module::tone(RADIOLIB_PIN_TYPE pin, uint16_t value, uint32_t duration) {
|
|
#if !defined(RADIOLIB_TONE_UNSUPPORTED)
|
|
if((pin == RADIOLIB_NC) || (cb_tone == nullptr)) {
|
|
return;
|
|
}
|
|
cb_tone(pin, value, duration);
|
|
#else
|
|
if(pin == RADIOLIB_NC) {
|
|
return;
|
|
}
|
|
#if defined(ESP32)
|
|
// ESP32 tone() emulation
|
|
(void)duration;
|
|
if(prev == -1) {
|
|
ledcAttachPin(pin, RADIOLIB_TONE_ESP32_CHANNEL);
|
|
}
|
|
if(prev != value) {
|
|
ledcWriteTone(RADIOLIB_TONE_ESP32_CHANNEL, value);
|
|
}
|
|
prev = value;
|
|
#elif defined(RADIOLIB_MBED_TONE_OVERRIDE)
|
|
// better tone for mbed OS boards
|
|
(void)duration;
|
|
if(!pwmPin) {
|
|
pwmPin = new mbed::PwmOut(digitalPinToPinName(pin));
|
|
}
|
|
pwmPin->period(1.0 / value);
|
|
pwmPin->write(0.5);
|
|
#else
|
|
(void)value;
|
|
(void)duration;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void Module::noTone(RADIOLIB_PIN_TYPE pin) {
|
|
#if !defined(RADIOLIB_TONE_UNSUPPORTED)
|
|
if((pin == RADIOLIB_NC) || (cb_noTone == nullptr)) {
|
|
return;
|
|
}
|
|
#if defined(ARDUINO_ARCH_STM32)
|
|
cb_noTone(pin, false);
|
|
#else
|
|
cb_noTone(pin);
|
|
#endif
|
|
#else
|
|
if(pin == RADIOLIB_NC) {
|
|
return;
|
|
}
|
|
#if defined(ESP32)
|
|
// ESP32 tone() emulation
|
|
ledcDetachPin(pin);
|
|
ledcWrite(RADIOLIB_TONE_ESP32_CHANNEL, 0);
|
|
prev = -1;
|
|
#elif defined(RADIOLIB_MBED_TONE_OVERRIDE)
|
|
// better tone for mbed OS boards
|
|
(void)pin;
|
|
pwmPin->suspend();
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void Module::attachInterrupt(RADIOLIB_PIN_TYPE interruptNum, void (*userFunc)(void), RADIOLIB_INTERRUPT_STATUS mode) {
|
|
if((interruptNum == RADIOLIB_NC) || (cb_attachInterrupt == nullptr)) {
|
|
return;
|
|
}
|
|
cb_attachInterrupt(interruptNum, userFunc, mode);
|
|
}
|
|
|
|
void Module::detachInterrupt(RADIOLIB_PIN_TYPE interruptNum) {
|
|
if((interruptNum == RADIOLIB_NC) || (cb_detachInterrupt == nullptr)) {
|
|
return;
|
|
}
|
|
cb_detachInterrupt(interruptNum);
|
|
}
|
|
|
|
void Module::yield() {
|
|
if(cb_yield == nullptr) {
|
|
return;
|
|
}
|
|
#if !defined(RADIOLIB_YIELD_UNSUPPORTED)
|
|
cb_yield();
|
|
#endif
|
|
}
|
|
|
|
void Module::delay(uint32_t ms) {
|
|
if(cb_delay == nullptr) {
|
|
return;
|
|
}
|
|
cb_delay(ms);
|
|
}
|
|
|
|
void Module::delayMicroseconds(uint32_t us) {
|
|
if(cb_delayMicroseconds == nullptr) {
|
|
return;
|
|
}
|
|
cb_delayMicroseconds(us);
|
|
}
|
|
|
|
uint32_t Module::millis() {
|
|
if(cb_millis == nullptr) {
|
|
return(0);
|
|
}
|
|
return(cb_millis());
|
|
}
|
|
|
|
uint32_t Module::micros() {
|
|
if(cb_micros == nullptr) {
|
|
return(0);
|
|
}
|
|
return(cb_micros());
|
|
}
|
|
|
|
uint32_t Module::pulseIn(RADIOLIB_PIN_TYPE pin, RADIOLIB_PIN_STATUS state, uint32_t timeout) {
|
|
if(cb_pulseIn == nullptr) {
|
|
return(0);
|
|
}
|
|
return(cb_pulseIn(pin, state, timeout));
|
|
}
|
|
|
|
void Module::begin() {
|
|
#if defined(RADIOLIB_BUILD_ARDUINO)
|
|
if(cb_SPIbegin == nullptr) {
|
|
return;
|
|
}
|
|
(this->*cb_SPIbegin)();
|
|
#endif
|
|
}
|
|
|
|
void Module::beginTransaction() {
|
|
#if defined(RADIOLIB_BUILD_ARDUINO)
|
|
if(cb_SPIbeginTransaction == nullptr) {
|
|
return;
|
|
}
|
|
(this->*cb_SPIbeginTransaction)();
|
|
#endif
|
|
}
|
|
|
|
uint8_t Module::transfer(uint8_t b) {
|
|
#if defined(RADIOLIB_BUILD_ARDUINO)
|
|
if(cb_SPItransfer == nullptr) {
|
|
return(0xFF);
|
|
}
|
|
return((this->*cb_SPItransfer)(b));
|
|
#endif
|
|
}
|
|
|
|
void Module::endTransaction() {
|
|
#if defined(RADIOLIB_BUILD_ARDUINO)
|
|
if(cb_SPIendTransaction == nullptr) {
|
|
return;
|
|
}
|
|
(this->*cb_SPIendTransaction)();
|
|
#endif
|
|
}
|
|
|
|
void Module::end() {
|
|
#if defined(RADIOLIB_BUILD_ARDUINO)
|
|
if(cb_SPIend == nullptr) {
|
|
return;
|
|
}
|
|
(this->*cb_SPIend)();
|
|
#endif
|
|
}
|
|
|
|
#if defined(RADIOLIB_BUILD_ARDUINO)
|
|
void Module::SPIbegin() {
|
|
_spi->begin();
|
|
}
|
|
#endif
|
|
|
|
void Module::SPIbeginTransaction() {
|
|
#if defined(RADIOLIB_BUILD_ARDUINO)
|
|
_spi->beginTransaction(_spiSettings);
|
|
#endif
|
|
}
|
|
|
|
uint8_t Module::SPItransfer(uint8_t b) {
|
|
#if defined(RADIOLIB_BUILD_ARDUINO)
|
|
return(_spi->transfer(b));
|
|
#endif
|
|
}
|
|
|
|
void Module::SPIendTransaction() {
|
|
#if defined(RADIOLIB_BUILD_ARDUINO)
|
|
_spi->endTransaction();
|
|
#endif
|
|
}
|
|
|
|
#if defined(RADIOLIB_BUILD_ARDUINO)
|
|
void Module::SPIend() {
|
|
_spi->end();
|
|
}
|
|
#endif
|
|
|
|
uint8_t Module::flipBits(uint8_t b) {
|
|
b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
|
|
b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
|
|
b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
|
|
return b;
|
|
}
|
|
|
|
uint16_t Module::flipBits16(uint16_t i) {
|
|
i = (i & 0xFF00) >> 8 | (i & 0x00FF) << 8;
|
|
i = (i & 0xF0F0) >> 4 | (i & 0x0F0F) << 4;
|
|
i = (i & 0xCCCC) >> 2 | (i & 0x3333) << 2;
|
|
i = (i & 0xAAAA) >> 1 | (i & 0x5555) << 1;
|
|
return i;
|
|
}
|
|
|
|
void Module::hexdump(uint8_t* data, size_t len) {
|
|
size_t rem_len = len;
|
|
for(size_t i = 0; i < len; i+=16) {
|
|
char str[80];
|
|
sprintf(str, "%07x ", i);
|
|
size_t line_len = 16;
|
|
if(rem_len < line_len) {
|
|
line_len = rem_len;
|
|
}
|
|
for(size_t j = 0; j < line_len; j++) {
|
|
sprintf(&str[8 + j*3], "%02x ", data[i+j]);
|
|
}
|
|
for(size_t j = line_len; j < 16; j++) {
|
|
sprintf(&str[8 + j*3], " ");
|
|
}
|
|
str[56] = '|';
|
|
str[57] = ' ';
|
|
for(size_t j = 0; j < line_len; j++) {
|
|
char c = data[i+j];
|
|
if((c < ' ') || (c > '~')) {
|
|
c = '.';
|
|
}
|
|
sprintf(&str[58 + j], "%c", c);
|
|
}
|
|
for(size_t j = line_len; j < 16; j++) {
|
|
sprintf(&str[58 + j], " ");
|
|
}
|
|
RADIOLIB_DEBUG_PRINTLN(str);
|
|
rem_len -= 16;
|
|
}
|
|
}
|
|
|
|
void Module::regdump(uint8_t start, uint8_t len) {
|
|
#if defined(RADIOLIB_STATIC_ONLY)
|
|
uint8_t buff[RADIOLIB_STATIC_ARRAY_SIZE];
|
|
#else
|
|
uint8_t* buff = new uint8_t[len];
|
|
#endif
|
|
SPIreadRegisterBurst(start, len, buff);
|
|
hexdump(buff, len);
|
|
#if !defined(RADIOLIB_STATIC_ONLY)
|
|
delete[] buff;
|
|
#endif
|
|
}
|
|
|
|
void Module::setRfSwitchPins(RADIOLIB_PIN_TYPE rxEn, RADIOLIB_PIN_TYPE txEn) {
|
|
// This can be on the stack, setRfSwitchTable copies the contents
|
|
const RADIOLIB_PIN_TYPE pins[] = {
|
|
rxEn, txEn, RADIOLIB_NC,
|
|
};
|
|
// This must be static, since setRfSwitchTable stores a reference.
|
|
static constexpr RfSwitchMode_t table[] = {
|
|
{MODE_IDLE, {LOW, LOW}},
|
|
{MODE_RX, {HIGH, LOW}},
|
|
{MODE_TX, {LOW, HIGH}},
|
|
END_OF_MODE_TABLE,
|
|
};
|
|
setRfSwitchTable(pins, table);
|
|
}
|
|
|
|
void Module::setRfSwitchTable(const RADIOLIB_PIN_TYPE (&pins)[3], const RfSwitchMode_t table[]) {
|
|
memcpy(_rfSwitchPins, pins, sizeof(_rfSwitchPins));
|
|
_rfSwitchTable = table;
|
|
for(size_t i = 0; i < RFSWITCH_MAX_PINS; i++)
|
|
this->pinMode(pins[i], OUTPUT);
|
|
}
|
|
|
|
const Module::RfSwitchMode_t *Module::findRfSwitchMode(uint8_t mode) const {
|
|
const RfSwitchMode_t *row = _rfSwitchTable;
|
|
while (row && row->mode != MODE_END_OF_TABLE) {
|
|
if (row->mode == mode)
|
|
return row;
|
|
++row;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void Module::setRfSwitchState(uint8_t mode) {
|
|
const RfSwitchMode_t *row = findRfSwitchMode(mode);
|
|
if(!row) {
|
|
// RF switch control is disabled or does not have this mode
|
|
return;
|
|
}
|
|
|
|
// set pins
|
|
const RADIOLIB_PIN_STATUS *value = &row->values[0];
|
|
for(size_t i = 0; i < RFSWITCH_MAX_PINS; i++) {
|
|
RADIOLIB_PIN_TYPE pin = _rfSwitchPins[i];
|
|
if (pin != RADIOLIB_NC)
|
|
this->digitalWrite(pin, *value);
|
|
++value;
|
|
}
|
|
}
|