#include "SX1272.h" #if !defined(RADIOLIB_EXCLUDE_SX127X) SX1272::SX1272(Module* mod) : SX127x(mod) { } int16_t SX1272::begin(float freq, float bw, uint8_t sf, uint8_t cr, uint8_t syncWord, int8_t power, uint16_t preambleLength, uint8_t gain) { // execute common part int16_t state = SX127x::begin(RADIOLIB_SX1272_CHIP_VERSION, syncWord, preambleLength); RADIOLIB_ASSERT(state); // configure publicly accessible settings state = setBandwidth(bw); RADIOLIB_ASSERT(state); state = setFrequency(freq); RADIOLIB_ASSERT(state); state = setSpreadingFactor(sf); RADIOLIB_ASSERT(state); state = setCodingRate(cr); RADIOLIB_ASSERT(state); state = setOutputPower(power); RADIOLIB_ASSERT(state); state = setGain(gain); RADIOLIB_ASSERT(state); // set publicly accessible settings that are not a part of begin method state = setCRC(true); RADIOLIB_ASSERT(state); return(state); } int16_t SX1272::beginFSK(float freq, float br, float freqDev, float rxBw, int8_t power, uint16_t preambleLength, bool enableOOK) { // execute common part int16_t state = SX127x::beginFSK(RADIOLIB_SX1272_CHIP_VERSION, br, freqDev, rxBw, preambleLength, enableOOK); RADIOLIB_ASSERT(state); // configure settings not accessible by API state = configFSK(); RADIOLIB_ASSERT(state); // configure publicly accessible settings state = setFrequency(freq); RADIOLIB_ASSERT(state); state = setOutputPower(power); RADIOLIB_ASSERT(state); if(enableOOK) { state = setDataShapingOOK(RADIOLIB_SHAPING_NONE); RADIOLIB_ASSERT(state); } else { state = setDataShaping(RADIOLIB_SHAPING_NONE); RADIOLIB_ASSERT(state); } // set publicly accessible settings that are not a part of begin method state = setCRC(true); RADIOLIB_ASSERT(state); return(state); } void SX1272::reset() { _mod->pinMode(_mod->getRst(), OUTPUT); _mod->digitalWrite(_mod->getRst(), HIGH); _mod->delay(1); _mod->digitalWrite(_mod->getRst(), LOW); _mod->delay(5); } int16_t SX1272::setFrequency(float freq) { RADIOLIB_CHECK_RANGE(freq, 860.0, 1020.0, RADIOLIB_ERR_INVALID_FREQUENCY); // set frequency and if successful, save the new setting int16_t state = SX127x::setFrequencyRaw(freq); if(state == RADIOLIB_ERR_NONE) { SX127x::_freq = freq; } return(state); } int16_t SX1272::setBandwidth(float bw) { // check active modem if(getActiveModem() != RADIOLIB_SX127X_LORA) { return(RADIOLIB_ERR_WRONG_MODEM); } uint8_t newBandwidth; // check allowed bandwidth values if(fabs(bw - 125.0) <= 0.001) { newBandwidth = RADIOLIB_SX1272_BW_125_00_KHZ; } else if(fabs(bw - 250.0) <= 0.001) { newBandwidth = RADIOLIB_SX1272_BW_250_00_KHZ; } else if(fabs(bw - 500.0) <= 0.001) { newBandwidth = RADIOLIB_SX1272_BW_500_00_KHZ; } else { return(RADIOLIB_ERR_INVALID_BANDWIDTH); } // set bandwidth and if successful, save the new setting int16_t state = SX1272::setBandwidthRaw(newBandwidth); if(state == RADIOLIB_ERR_NONE) { SX127x::_bw = bw; // calculate symbol length and set low data rate optimization, if auto-configuration is enabled if(_ldroAuto) { float symbolLength = (float)(uint32_t(1) << SX127x::_sf) / (float)SX127x::_bw; RADIOLIB_DEBUG_PRINT("Symbol length: "); RADIOLIB_DEBUG_PRINT(symbolLength); RADIOLIB_DEBUG_PRINTLN(" ms"); if(symbolLength >= 16.0) { state = _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_MODEM_CONFIG_1, RADIOLIB_SX1272_LOW_DATA_RATE_OPT_ON, 0, 0); } else { state = _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_MODEM_CONFIG_1, RADIOLIB_SX1272_LOW_DATA_RATE_OPT_OFF, 0, 0); } } } return(state); } int16_t SX1272::setSpreadingFactor(uint8_t sf) { // check active modem if(getActiveModem() != RADIOLIB_SX127X_LORA) { return(RADIOLIB_ERR_WRONG_MODEM); } uint8_t newSpreadingFactor; // check allowed spreading factor values switch(sf) { case 6: newSpreadingFactor = RADIOLIB_SX127X_SF_6; break; case 7: newSpreadingFactor = RADIOLIB_SX127X_SF_7; break; case 8: newSpreadingFactor = RADIOLIB_SX127X_SF_8; break; case 9: newSpreadingFactor = RADIOLIB_SX127X_SF_9; break; case 10: newSpreadingFactor = RADIOLIB_SX127X_SF_10; break; case 11: newSpreadingFactor = RADIOLIB_SX127X_SF_11; break; case 12: newSpreadingFactor = RADIOLIB_SX127X_SF_12; break; default: return(RADIOLIB_ERR_INVALID_SPREADING_FACTOR); } // set spreading factor and if successful, save the new setting int16_t state = SX1272::setSpreadingFactorRaw(newSpreadingFactor); if(state == RADIOLIB_ERR_NONE) { SX127x::_sf = sf; // calculate symbol length and set low data rate optimization, if auto-configuration is enabled if(_ldroAuto) { float symbolLength = (float)(uint32_t(1) << SX127x::_sf) / (float)SX127x::_bw; RADIOLIB_DEBUG_PRINT("Symbol length: "); RADIOLIB_DEBUG_PRINT(symbolLength); RADIOLIB_DEBUG_PRINTLN(" ms"); if(symbolLength >= 16.0) { state = _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_MODEM_CONFIG_1, RADIOLIB_SX1272_LOW_DATA_RATE_OPT_ON, 0, 0); } else { state = _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_MODEM_CONFIG_1, RADIOLIB_SX1272_LOW_DATA_RATE_OPT_OFF, 0, 0); } } } return(state); } int16_t SX1272::setCodingRate(uint8_t cr) { // check active modem if(getActiveModem() != RADIOLIB_SX127X_LORA) { return(RADIOLIB_ERR_WRONG_MODEM); } uint8_t newCodingRate; // check allowed coding rate values switch(cr) { case 5: newCodingRate = RADIOLIB_SX1272_CR_4_5; break; case 6: newCodingRate = RADIOLIB_SX1272_CR_4_6; break; case 7: newCodingRate = RADIOLIB_SX1272_CR_4_7; break; case 8: newCodingRate = RADIOLIB_SX1272_CR_4_8; break; default: return(RADIOLIB_ERR_INVALID_CODING_RATE); } // set coding rate and if successful, save the new setting int16_t state = SX1272::setCodingRateRaw(newCodingRate); if(state == RADIOLIB_ERR_NONE) { SX127x::_cr = cr; } return(state); } int16_t SX1272::setOutputPower(int8_t power, bool useRfo) { // check allowed power range if(useRfo) { RADIOLIB_CHECK_RANGE(power, -1, 14, RADIOLIB_ERR_INVALID_OUTPUT_POWER); } else { RADIOLIB_CHECK_RANGE(power, 2, 20, RADIOLIB_ERR_INVALID_OUTPUT_POWER); } // set mode to standby int16_t state = SX127x::standby(); if(useRfo) { // RFO output state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_PA_CONFIG, RADIOLIB_SX127X_PA_SELECT_RFO, 7, 7); state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_PA_CONFIG, (power + 1), 3, 0); state |= _mod->SPIsetRegValue(RADIOLIB_SX1272_REG_PA_DAC, RADIOLIB_SX127X_PA_BOOST_OFF, 2, 0); } else { if(power <= 17) { // power is 2 - 17 dBm, enable PA1 + PA2 on PA_BOOST state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_PA_CONFIG, RADIOLIB_SX127X_PA_SELECT_BOOST, 7, 7); state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_PA_CONFIG, (power - 2), 3, 0); state |= _mod->SPIsetRegValue(RADIOLIB_SX1272_REG_PA_DAC, RADIOLIB_SX127X_PA_BOOST_OFF, 2, 0); } else { // power is 18 - 20 dBm, enable PA1 + PA2 on PA_BOOST and enable high power control state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_PA_CONFIG, RADIOLIB_SX127X_PA_SELECT_BOOST, 7, 7); state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_PA_CONFIG, (power - 5), 3, 0); state |= _mod->SPIsetRegValue(RADIOLIB_SX1272_REG_PA_DAC, RADIOLIB_SX127X_PA_BOOST_ON, 2, 0); } } return(state); } int16_t SX1272::setGain(uint8_t gain) { // check allowed range if(gain > 6) { return(RADIOLIB_ERR_INVALID_GAIN); } // set mode to standby int16_t state = SX127x::standby(); // get modem int16_t modem = getActiveModem(); if(modem == RADIOLIB_SX127X_LORA){ // set gain if(gain == 0) { // gain set to 0, enable AGC loop state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_MODEM_CONFIG_2, RADIOLIB_SX1272_AGC_AUTO_ON, 2, 2); } else { state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_MODEM_CONFIG_2, RADIOLIB_SX1272_AGC_AUTO_OFF, 2, 2); state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_LNA, (gain << 5) | RADIOLIB_SX127X_LNA_BOOST_ON); } } else if(modem == RADIOLIB_SX127X_FSK_OOK) { // set gain if(gain == 0) { // gain set to 0, enable AGC loop state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_RX_CONFIG, RADIOLIB_SX127X_AGC_AUTO_ON, 3, 3); } else { state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_RX_CONFIG, RADIOLIB_SX127X_AGC_AUTO_ON, 3, 3); state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_LNA, (gain << 5) | RADIOLIB_SX127X_LNA_BOOST_ON); } } return(state); } int16_t SX1272::setDataShaping(uint8_t sh) { // check active modem if(getActiveModem() != RADIOLIB_SX127X_FSK_OOK) { return(RADIOLIB_ERR_WRONG_MODEM); } // check modulation if(SX127x::_ook) { return(RADIOLIB_ERR_INVALID_MODULATION); } // set mode to standby int16_t state = SX127x::standby(); RADIOLIB_ASSERT(state); // set data shaping switch(sh) { case RADIOLIB_SHAPING_NONE: return(_mod->SPIsetRegValue(RADIOLIB_SX127X_REG_OP_MODE, RADIOLIB_SX1272_NO_SHAPING, 4, 3)); case RADIOLIB_SHAPING_0_3: return(_mod->SPIsetRegValue(RADIOLIB_SX127X_REG_OP_MODE, RADIOLIB_SX1272_FSK_GAUSSIAN_0_3, 4, 3)); case RADIOLIB_SHAPING_0_5: return(_mod->SPIsetRegValue(RADIOLIB_SX127X_REG_OP_MODE, RADIOLIB_SX1272_FSK_GAUSSIAN_0_5, 4, 3)); case RADIOLIB_SHAPING_1_0: return(_mod->SPIsetRegValue(RADIOLIB_SX127X_REG_OP_MODE, RADIOLIB_SX1272_FSK_GAUSSIAN_1_0, 4, 3)); default: return(RADIOLIB_ERR_INVALID_DATA_SHAPING); } } int16_t SX1272::setDataShapingOOK(uint8_t sh) { // check active modem if(getActiveModem() != RADIOLIB_SX127X_FSK_OOK) { return(RADIOLIB_ERR_WRONG_MODEM); } // check modulation if(!SX127x::_ook) { return(RADIOLIB_ERR_INVALID_MODULATION); } // set mode to standby int16_t state = SX127x::standby(); // set data shaping switch(sh) { case 0: state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_OP_MODE, RADIOLIB_SX1272_NO_SHAPING, 4, 3); break; case 1: state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_OP_MODE, RADIOLIB_SX1272_OOK_FILTER_BR, 4, 3); break; case 2: state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_OP_MODE, RADIOLIB_SX1272_OOK_FILTER_2BR, 4, 3); break; default: state = RADIOLIB_ERR_INVALID_DATA_SHAPING; break; } return(state); } float SX1272::getRSSI(bool packet, bool skipReceive) { return(SX127x::getRSSI(packet, skipReceive, -139)); } int16_t SX1272::setCRC(bool enable, bool mode) { if(getActiveModem() == RADIOLIB_SX127X_LORA) { // set LoRa CRC SX127x::_crcEnabled = enable; if(enable) { return(_mod->SPIsetRegValue(RADIOLIB_SX127X_REG_MODEM_CONFIG_2, RADIOLIB_SX1272_RX_CRC_MODE_ON, 2, 2)); } else { return(_mod->SPIsetRegValue(RADIOLIB_SX127X_REG_MODEM_CONFIG_2, RADIOLIB_SX1272_RX_CRC_MODE_OFF, 2, 2)); } } else { // set FSK CRC int16_t state = RADIOLIB_ERR_NONE; if(enable) { state = _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_PACKET_CONFIG_1, RADIOLIB_SX127X_CRC_ON, 4, 4); } else { state = _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_PACKET_CONFIG_1, RADIOLIB_SX127X_CRC_OFF, 4, 4); } RADIOLIB_ASSERT(state); // set FSK CRC mode if(mode) { return(_mod->SPIsetRegValue(RADIOLIB_SX127X_REG_PACKET_CONFIG_1, RADIOLIB_SX127X_CRC_WHITENING_TYPE_IBM, 0, 0)); } else { return(_mod->SPIsetRegValue(RADIOLIB_SX127X_REG_PACKET_CONFIG_1, RADIOLIB_SX127X_CRC_WHITENING_TYPE_CCITT, 0, 0)); } } } int16_t SX1272::forceLDRO(bool enable) { if(getActiveModem() != RADIOLIB_SX127X_LORA) { return(RADIOLIB_ERR_WRONG_MODEM); } _ldroAuto = false; if(enable) { return(_mod->SPIsetRegValue(RADIOLIB_SX127X_REG_MODEM_CONFIG_1, RADIOLIB_SX1272_LOW_DATA_RATE_OPT_ON, 0, 0)); } else { return(_mod->SPIsetRegValue(RADIOLIB_SX127X_REG_MODEM_CONFIG_1, RADIOLIB_SX1272_LOW_DATA_RATE_OPT_OFF, 0, 0)); } } int16_t SX1272::autoLDRO() { if(getActiveModem() != RADIOLIB_SX127X_LORA) { return(RADIOLIB_ERR_WRONG_MODEM); } _ldroAuto = true; return(RADIOLIB_ERR_NONE); } int16_t SX1272::implicitHeader(size_t len) { return(setHeaderType(RADIOLIB_SX1272_HEADER_IMPL_MODE, len)); } int16_t SX1272::explicitHeader() { return(setHeaderType(RADIOLIB_SX1272_HEADER_EXPL_MODE)); } int16_t SX1272::setBandwidthRaw(uint8_t newBandwidth) { // set mode to standby int16_t state = SX127x::standby(); // write register state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_MODEM_CONFIG_1, newBandwidth, 7, 6); return(state); } int16_t SX1272::setSpreadingFactorRaw(uint8_t newSpreadingFactor) { // set mode to standby int16_t state = SX127x::standby(); // write registers if(newSpreadingFactor == RADIOLIB_SX127X_SF_6) { state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_MODEM_CONFIG_1, RADIOLIB_SX1272_HEADER_IMPL_MODE | (SX127x::_crcEnabled ? RADIOLIB_SX1272_RX_CRC_MODE_ON : RADIOLIB_SX1272_RX_CRC_MODE_OFF), 2, 1); state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_MODEM_CONFIG_2, RADIOLIB_SX127X_SF_6 | RADIOLIB_SX127X_TX_MODE_SINGLE, 7, 3); state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_DETECT_OPTIMIZE, RADIOLIB_SX127X_DETECT_OPTIMIZE_SF_6, 2, 0); state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_DETECTION_THRESHOLD, RADIOLIB_SX127X_DETECTION_THRESHOLD_SF_6); } else { state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_MODEM_CONFIG_1, RADIOLIB_SX1272_HEADER_EXPL_MODE | (SX127x::_crcEnabled ? RADIOLIB_SX1272_RX_CRC_MODE_ON : RADIOLIB_SX1272_RX_CRC_MODE_OFF), 2, 1); state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_MODEM_CONFIG_2, newSpreadingFactor | RADIOLIB_SX127X_TX_MODE_SINGLE, 7, 3); state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_DETECT_OPTIMIZE, RADIOLIB_SX127X_DETECT_OPTIMIZE_SF_7_12, 2, 0); state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_DETECTION_THRESHOLD, RADIOLIB_SX127X_DETECTION_THRESHOLD_SF_7_12); } return(state); } int16_t SX1272::setCodingRateRaw(uint8_t newCodingRate) { // set mode to standby int16_t state = SX127x::standby(); // write register state |= _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_MODEM_CONFIG_1, newCodingRate, 5, 3); return(state); } int16_t SX1272::setHeaderType(uint8_t headerType, size_t len) { // check active modem if(getActiveModem() != RADIOLIB_SX127X_LORA) { return(RADIOLIB_ERR_WRONG_MODEM); } // set requested packet mode int16_t state = _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_MODEM_CONFIG_1, headerType, 2, 2); RADIOLIB_ASSERT(state); // set length to register state = _mod->SPIsetRegValue(RADIOLIB_SX127X_REG_PAYLOAD_LENGTH, len); RADIOLIB_ASSERT(state); // update cached value _packetLength = len; return(state); } int16_t SX1272::configFSK() { // configure common registers int16_t state = SX127x::configFSK(); RADIOLIB_ASSERT(state); // set fast PLL hop state = _mod->SPIsetRegValue(RADIOLIB_SX1272_REG_PLL_HOP, RADIOLIB_SX127X_FAST_HOP_ON, 7, 7); return(state); } void SX1272::errataFix(bool rx) { (void)rx; // mitigation of receiver spurious response // see SX1272/73 Errata, section 2.2 for details _mod->SPIsetRegValue(0x31, 0b10000000, 7, 7); } #endif