#include "SX1268.h" #if !RADIOLIB_EXCLUDE_SX126X SX1268::SX1268(Module* mod) : SX126x(mod) { chipType = RADIOLIB_SX1268_CHIP_TYPE; } int16_t SX1268::begin(float freq, float bw, uint8_t sf, uint8_t cr, uint8_t syncWord, int8_t power, uint16_t preambleLength, float tcxoVoltage, bool useRegulatorLDO) { // execute common part int16_t state = SX126x::begin(cr, syncWord, preambleLength, tcxoVoltage, useRegulatorLDO); RADIOLIB_ASSERT(state); // configure publicly accessible settings state = setFrequency(freq); RADIOLIB_ASSERT(state); state = setSpreadingFactor(sf); RADIOLIB_ASSERT(state); state = setBandwidth(bw); RADIOLIB_ASSERT(state); state = setOutputPower(power); RADIOLIB_ASSERT(state); state = SX126x::fixPaClamping(); RADIOLIB_ASSERT(state); return(state); } int16_t SX1268::beginFSK(float freq, float br, float freqDev, float rxBw, int8_t power, uint16_t preambleLength, float tcxoVoltage, bool useRegulatorLDO) { // execute common part int16_t state = SX126x::beginFSK(br, freqDev, rxBw, preambleLength, tcxoVoltage, useRegulatorLDO); RADIOLIB_ASSERT(state); // configure publicly accessible settings state = setFrequency(freq); RADIOLIB_ASSERT(state); state = setOutputPower(power); RADIOLIB_ASSERT(state); state = SX126x::fixPaClamping(); RADIOLIB_ASSERT(state); return(state); } int16_t SX1268::beginLRFHSS(float freq, uint8_t bw, uint8_t cr, bool narrowGrid, int8_t power, float tcxoVoltage, bool useRegulatorLDO) { // execute common part int16_t state = SX126x::beginLRFHSS(bw, cr, narrowGrid, tcxoVoltage, useRegulatorLDO); RADIOLIB_ASSERT(state); // configure publicly accessible settings state = setFrequency(freq); RADIOLIB_ASSERT(state); state = SX126x::fixPaClamping(); RADIOLIB_ASSERT(state); state = setOutputPower(power); RADIOLIB_ASSERT(state); return(state); } int16_t SX1268::setFrequency(float freq) { return(setFrequency(freq, true)); } /// \todo integers only (all modules - frequency, data rate, bandwidth etc.) int16_t SX1268::setFrequency(float freq, bool calibrate) { RADIOLIB_CHECK_RANGE(freq, 410.0, 810.0, RADIOLIB_ERR_INVALID_FREQUENCY); // calibrate image rejection if(calibrate) { uint8_t data[2] = { 0, 0 }; // try to match the frequency ranges int freqBand = (int)freq; if((freqBand >= 779) && (freqBand <= 787)) { data[0] = RADIOLIB_SX126X_CAL_IMG_779_MHZ_1; data[1] = RADIOLIB_SX126X_CAL_IMG_779_MHZ_2; } else if((freqBand >= 470) && (freqBand <= 510)) { data[0] = RADIOLIB_SX126X_CAL_IMG_470_MHZ_1; data[1] = RADIOLIB_SX126X_CAL_IMG_470_MHZ_2; } else if((freqBand >= 430) && (freqBand <= 440)) { data[0] = RADIOLIB_SX126X_CAL_IMG_430_MHZ_1; data[1] = RADIOLIB_SX126X_CAL_IMG_430_MHZ_2; } int16_t state; if(data[0]) { // matched with predefined ranges, do the calibration state = SX126x::calibrateImage(data); } else { // if nothing matched, try custom calibration - the may or may not work RADIOLIB_DEBUG_BASIC_PRINTLN("Failed to match predefined frequency range, trying custom"); state = SX126x::calibrateImageRejection(freq - 4.0f, freq + 4.0f); } RADIOLIB_ASSERT(state); } // set frequency return(SX126x::setFrequencyRaw(freq)); } int16_t SX1268::setOutputPower(int8_t power) { // check if power value is configurable int16_t state = checkOutputPower(power, NULL); RADIOLIB_ASSERT(state); // get current OCP configuration uint8_t ocp = 0; state = readRegister(RADIOLIB_SX126X_REG_OCP_CONFIGURATION, &ocp, 1); RADIOLIB_ASSERT(state); // set PA config state = SX126x::setPaConfig(0x04, RADIOLIB_SX126X_PA_CONFIG_SX1268); RADIOLIB_ASSERT(state); // set output power with default 200us ramp state = SX126x::setTxParams(power, RADIOLIB_SX126X_PA_RAMP_200U); RADIOLIB_ASSERT(state); // restore OCP configuration return(writeRegister(RADIOLIB_SX126X_REG_OCP_CONFIGURATION, &ocp, 1)); } int16_t SX1268::checkOutputPower(int8_t power, int8_t* clipped) { if(clipped) { *clipped = RADIOLIB_MAX(-9, RADIOLIB_MIN(22, power)); } RADIOLIB_CHECK_RANGE(power, -9, 22, RADIOLIB_ERR_INVALID_OUTPUT_POWER); return(RADIOLIB_ERR_NONE); } #endif