#ifndef PI_HAL_H
#define PI_HAL_H

// include RadioLib
#include <RadioLib.h>

// include the library for Raspberry GPIO pins
#include "pigpio.h"

// these should really be swapped, but for some reason,
// it seems like the change directions are inverted in gpioSetAlert functions
#define PI_RISING     (FALLING_EDGE)
#define PI_FALLING    (RISING_EDGE)

// forward declaration of alert handler that will be used to emulate interrupts
static void pigpioAlertHandler(int event, int level, uint32_t tick, void *userdata);

// create a new Raspberry Pi hardware abstraction layer
// using the pigpio library
// the HAL must inherit from the base RadioLibHal class
// and implement all of its virtual methods
class PiHal : public RadioLibHal {
  public:
    // default constructor - initializes the base HAL and any needed private members
    PiHal(uint8_t spiChannel, uint32_t spiSpeed = 2000000)
      : RadioLibHal(PI_INPUT, PI_OUTPUT, PI_LOW, PI_HIGH, PI_RISING, PI_FALLING), 
      _spiChannel(spiChannel),
      _spiSpeed(spiSpeed) {
    }

    void init() override {
      // first initialise pigpio library
      gpioInitialise();

      // now the SPI
      spiBegin();

      // Waveshare LoRaWAN Hat also needs pin 18 to be pulled high to enable the radio
      gpioSetMode(18, PI_OUTPUT);
      gpioWrite(18, PI_HIGH);
    }

    void term() override {
      // stop the SPI
      spiEnd();

      // pull the enable pin low
      gpioSetMode(18, PI_OUTPUT);
      gpioWrite(18, PI_LOW);

      // finally, stop the pigpio library
      gpioTerminate();
    }

    // GPIO-related methods (pinMode, digitalWrite etc.) should check
    // RADIOLIB_NC as an alias for non-connected pins
    void pinMode(uint32_t pin, uint32_t mode) override {
      if(pin == RADIOLIB_NC) {
        return;
      }

      gpioSetMode(pin, mode);
    }

    void digitalWrite(uint32_t pin, uint32_t value) override {
      if(pin == RADIOLIB_NC) {
        return;
      }

      gpioWrite(pin, value);
    }

    uint32_t digitalRead(uint32_t pin) override {
      if(pin == RADIOLIB_NC) {
        return(0);
      }

      return(gpioRead(pin));
    }

    void attachInterrupt(uint32_t interruptNum, void (*interruptCb)(void), uint32_t mode) override {
      if((interruptNum == RADIOLIB_NC) || (interruptNum > PI_MAX_USER_GPIO)) {
        return;
      }

      // enable emulated interrupt
      interruptEnabled[interruptNum] = true;
      interruptModes[interruptNum] = mode;
      interruptCallbacks[interruptNum] = interruptCb;

      // set pigpio alert callback
      gpioSetAlertFuncEx(interruptNum, pigpioAlertHandler, (void*)this);
    }

    void detachInterrupt(uint32_t interruptNum) override {
      if((interruptNum == RADIOLIB_NC) || (interruptNum > PI_MAX_USER_GPIO)) {
        return;
      }

      // clear emulated interrupt
      interruptEnabled[interruptNum] = false;
      interruptModes[interruptNum] = 0;
      interruptCallbacks[interruptNum] = NULL;

      // disable pigpio alert callback
      gpioSetAlertFuncEx(interruptNum, NULL, NULL);
    }

    void delay(RadioLibTime_t ms) override {
      gpioDelay(ms * 1000);
    }

    void delayMicroseconds(RadioLibTime_t us) override {
      gpioDelay(us);
    }

    RadioLibTime_t millis() override {
      return(gpioTick() / 1000);
    }

    RadioLibTime_t micros() override {
      return(gpioTick());
    }

    long pulseIn(uint32_t pin, uint32_t state, RadioLibTime_t timeout) override {
      if(pin == RADIOLIB_NC) {
        return(0);
      }

      this->pinMode(pin, PI_INPUT);
      uint32_t start = this->micros();
      uint32_t curtick = this->micros();

      while(this->digitalRead(pin) == state) {
        if((this->micros() - curtick) > timeout) {
          return(0);
        }
      }

      return(this->micros() - start);
    }

    void spiBegin() {
      if(_spiHandle < 0) {
        _spiHandle = spiOpen(_spiChannel, _spiSpeed, 0);
      }
    }

    void spiBeginTransaction() {}

    void spiTransfer(uint8_t* out, size_t len, uint8_t* in) {
      spiXfer(_spiHandle, (char*)out, (char*)in, len);
    }

    void spiEndTransaction() {}

    void spiEnd() {
      if(_spiHandle >= 0) {
        spiClose(_spiHandle);
        _spiHandle = -1;
      }
    }

    // interrupt emulation
    bool interruptEnabled[PI_MAX_USER_GPIO + 1];
    uint32_t interruptModes[PI_MAX_USER_GPIO + 1];
    typedef void (*RadioLibISR)(void);
    RadioLibISR interruptCallbacks[PI_MAX_USER_GPIO + 1];

  private:
    // the HAL can contain any additional private members
    const unsigned int _spiSpeed;
    const uint8_t _spiChannel;
    int _spiHandle = -1;
};

// this handler emulates interrupts
static void pigpioAlertHandler(int event, int level, uint32_t tick, void *userdata) {
  if((event > PI_MAX_USER_GPIO) || (!userdata)) {
    return;
  }
  
  // PiHal isntance is passed via the user data
  PiHal* hal = (PiHal*)userdata;

  // check the interrupt is enabled, the level matches and a callback exists
  if((hal->interruptEnabled[event]) &&
     (hal->interruptModes[event] == level) &&
     (hal->interruptCallbacks[event])) {
    hal->interruptCallbacks[event]();
  }
}

#endif