/* RadioLib LoRaWAN End Device Example This example joins a LoRaWAN network and will send uplink packets. Before you start, you will have to register your device at https://www.thethingsnetwork.org/ After your device is registered, you can run this example. The device will join the network and start uploading data. NOTE: LoRaWAN v1.1 requires storing parameters persistently! RadioLib does this by using EEPROM (persistent storage), by default starting at address 0 and using 448 bytes. If you already use EEPROM in your application, you will have to either avoid this range, or change it by setting a different start address by changing the value of RADIOLIB_HAL_PERSISTENT_STORAGE_BASE macro, either during build or in src/BuildOpt.h. For default module settings, see the wiki page https://github.com/jgromes/RadioLib/wiki/Default-configuration For full API reference, see the GitHub Pages https://jgromes.github.io/RadioLib/ */ // include the library #include // SX1262 has the following pin order: // Module(NSS/CS, DIO1, RESET, BUSY) // SX1262 radio = new Module(8, 14, 12, 13); // SX1278 has the following pin order: // Module(NSS/CS, DIO0, RESET, DIO1) SX1278 radio = new Module(10, 2, 9, 3); // create the node instance on the EU-868 band // using the radio module and the encryption key // make sure you are using the correct band // based on your geographical location! LoRaWANNode node(&radio, &EU868); // for fixed bands with subband selection // such as US915 and AU915, you must specify // the subband that matches the Frequency Plan // that you selected on your LoRaWAN console /* LoRaWANNode node(&radio, &US915, 2); */ void setup() { Serial.begin(9600); // initialize radio (SX1262 / SX1278 / ... ) with default settings Serial.print(F("[Radio] Initializing ... ")); int state = radio.begin(); if(state == RADIOLIB_ERR_NONE) { Serial.println(F("success!")); } else { Serial.print(F("failed, code ")); Serial.println(state); while(true); } // application identifier - pre-LoRaWAN 1.1.0, this was called appEUI // when adding new end device in TTN, you will have to enter this number // you can pick any number you want, but it has to be unique uint64_t joinEUI = 0x12AD1011B0C0FFEE; // device identifier - this number can be anything // when adding new end device in TTN, you can generate this number, // or you can set any value you want, provided it is also unique uint64_t devEUI = 0x70B3D57ED005E120; // select some encryption keys which will be used to secure the communication // there are two of them - network key and application key // because LoRaWAN uses AES-128, the key MUST be 16 bytes (or characters) long // network key is the ASCII string "topSecretKey1234" uint8_t nwkKey[] = { 0x74, 0x6F, 0x70, 0x53, 0x65, 0x63, 0x72, 0x65, 0x74, 0x4B, 0x65, 0x79, 0x31, 0x32, 0x33, 0x34 }; // application key is the ASCII string "aDifferentKeyABC" uint8_t appKey[] = { 0x61, 0x44, 0x69, 0x66, 0x66, 0x65, 0x72, 0x65, 0x6E, 0x74, 0x4B, 0x65, 0x79, 0x41, 0x42, 0x43 }; // prior to LoRaWAN 1.1.0, only a single "nwkKey" is used // when connecting to LoRaWAN 1.0 network, "appKey" will be disregarded // and can be set to NULL // on EEPROM-enabled boards, after the device has been activated, // the session can be restored without rejoining after device power cycle // this is intrinsically done when calling `beginOTAA()` with the same keys // in that case, the function will not need to transmit a JoinRequest // now we can start the activation // this can take up to 10 seconds, and requires a LoRaWAN gateway in range // a specific starting-datarate can be selected in dynamic bands (e.g. EU868): /* uint8_t joinDr = 4; state = node.beginOTAA(joinEUI, devEUI, nwkKey, appKey, joinDr); */ Serial.print(F("[LoRaWAN] Attempting over-the-air activation ... ")); state = node.beginOTAA(joinEUI, devEUI, nwkKey, appKey); if(state >= RADIOLIB_ERR_NONE) { Serial.println(F("success!")); delay(2000); // small delay between joining and uplink } else { Serial.print(F("failed, code ")); Serial.println(state); while(true); } } // counter to keep track of transmitted packets int count = 0; void loop() { // send uplink to port 10 Serial.print(F("[LoRaWAN] Sending uplink packet ... ")); String strUp = "Hello!" + String(count++); String strDown; int state = node.sendReceive(strUp, 10, strDown); if(state == RADIOLIB_ERR_NONE) { Serial.println(F("received a downlink!")); // print data of the packet (if there are any) Serial.print(F("[LoRaWAN] Data:\t\t")); if(strDown.length() > 0) { Serial.println(strDown); } else { Serial.println(F("")); } // print RSSI (Received Signal Strength Indicator) Serial.print(F("[LoRaWAN] RSSI:\t\t")); Serial.print(radio.getRSSI()); Serial.println(F(" dBm")); // print SNR (Signal-to-Noise Ratio) Serial.print(F("[LoRaWAN] SNR:\t\t")); Serial.print(radio.getSNR()); Serial.println(F(" dB")); // print frequency error Serial.print(F("[LoRaWAN] Frequency error:\t")); Serial.print(radio.getFrequencyError()); Serial.println(F(" Hz")); } else if(state == RADIOLIB_ERR_RX_TIMEOUT) { Serial.println(F("no downlink!")); } else { Serial.print(F("failed, code ")); Serial.println(state); } // on EEPROM enabled boards, you should save the current session // by calling "saveSession" which allows retrieving the session after reboot or deepsleep node.saveSession(); // wait before sending another packet uint32_t minimumDelay = 60000; // try to send once every minute uint32_t interval = node.timeUntilUplink(); // calculate minimum duty cycle delay (per law!) uint32_t delayMs = max(interval, minimumDelay); // cannot send faster than duty cycle allows delay(delayMs); }