#include "LoRaWAN.h" #include #if defined(ESP_PLATFORM) #include "esp_attr.h" #endif #if !RADIOLIB_EXCLUDE_LORAWAN // flag to indicate whether there was some action during Rx mode (timeout or downlink) static volatile bool downlinkAction = false; // interrupt service routine to handle downlinks automatically #if defined(ESP8266) || defined(ESP32) IRAM_ATTR #endif static void LoRaWANNodeOnDownlinkAction(void) { downlinkAction = true; } uint8_t getDownlinkDataRate(uint8_t uplink, uint8_t offset, uint8_t base, uint8_t min, uint8_t max) { int8_t dr = uplink - offset + base; if(dr < min) { dr = min; } else if (dr > max) { dr = max; } return(dr); } LoRaWANNode::LoRaWANNode(PhysicalLayer* phy, const LoRaWANBand_t* band, uint8_t subBand) { this->phyLayer = phy; this->band = band; this->rx2 = this->band->rx2; this->txPowerMax = this->band->powerMax; this->subBand = subBand; this->difsSlots = 2; this->backoffMax = 6; this->enableCSMA = false; } void LoRaWANNode::setCSMA(uint8_t backoffMax, uint8_t difsSlots, bool enableCSMA) { this->backoffMax = backoffMax; this->difsSlots = difsSlots; this->enableCSMA = enableCSMA; } void LoRaWANNode::clearNonces() { // clear & set all the device credentials memset(this->bufferNonces, 0, RADIOLIB_LW_NONCES_BUF_SIZE); this->keyCheckSum = 0; this->devNonce = 0; this->joinNonce = 0; this->isActive = false; } void LoRaWANNode::clearSession() { memset(this->bufferSession, 0, RADIOLIB_LW_SESSION_BUF_SIZE); memset(&(this->commandsUp), 0, sizeof(LoRaWANMacCommandQueue_t)); memset(&(this->commandsDown), 0, sizeof(LoRaWANMacCommandQueue_t)); this->bufferNonces[RADIOLIB_LW_NONCES_ACTIVE] = (uint8_t)false; this->isActive = false; } uint8_t* LoRaWANNode::getBufferNonces() { // generate the signature of the Nonces buffer, and store it in the last two bytes of the Nonces buffer uint16_t signature = LoRaWANNode::checkSum16(this->bufferNonces, RADIOLIB_LW_NONCES_BUF_SIZE - 2); LoRaWANNode::hton(&this->bufferNonces[RADIOLIB_LW_NONCES_SIGNATURE], signature); return(this->bufferNonces); } int16_t LoRaWANNode::setBufferNonces(uint8_t* persistentBuffer) { if(this->isActivated()) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Did not update buffer: session already active"); return(RADIOLIB_ERR_NONE); } int16_t state = LoRaWANNode::checkBufferCommon(persistentBuffer, RADIOLIB_LW_NONCES_BUF_SIZE); RADIOLIB_ASSERT(state); bool isSameKeys = LoRaWANNode::ntoh(&persistentBuffer[RADIOLIB_LW_NONCES_CHECKSUM]) == this->keyCheckSum; bool isSameMode = LoRaWANNode::ntoh(&persistentBuffer[RADIOLIB_LW_NONCES_MODE]) == this->lwMode; bool isSameClass = LoRaWANNode::ntoh(&persistentBuffer[RADIOLIB_LW_NONCES_CLASS]) == this->lwClass; bool isSamePlan = LoRaWANNode::ntoh(&persistentBuffer[RADIOLIB_LW_NONCES_PLAN]) == this->band->bandNum; // check if Nonces buffer matches the current configuration if(!isSameKeys || !isSameMode || !isSameClass || !isSamePlan) { // if configuration did not match, discard whatever is currently in the buffers and start fresh RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Configuration mismatch (keys: %d, mode: %d, class: %d, plan: %d)", isSameKeys, isSameMode, isSameClass, isSamePlan); RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Discarding the Nonces buffer:"); RADIOLIB_DEBUG_PROTOCOL_HEXDUMP(persistentBuffer, RADIOLIB_LW_NONCES_BUF_SIZE); return(RADIOLIB_LORAWAN_NONCES_DISCARDED); } // copy the whole buffer over memcpy(this->bufferNonces, persistentBuffer, RADIOLIB_LW_NONCES_BUF_SIZE); this->devNonce = LoRaWANNode::ntoh(&this->bufferNonces[RADIOLIB_LW_NONCES_DEV_NONCE]); this->joinNonce = LoRaWANNode::ntoh(&this->bufferNonces[RADIOLIB_LW_NONCES_JOIN_NONCE], 3); // revert to inactive as long as no session is restored this->bufferNonces[RADIOLIB_LW_NONCES_ACTIVE] = (uint8_t)false; this->isActive = false; return(state); } uint8_t* LoRaWANNode::getBufferSession() { // store all frame counters LoRaWANNode::hton(&this->bufferSession[RADIOLIB_LW_SESSION_A_FCNT_DOWN], this->aFCntDown); LoRaWANNode::hton(&this->bufferSession[RADIOLIB_LW_SESSION_N_FCNT_DOWN], this->nFCntDown); LoRaWANNode::hton(&this->bufferSession[RADIOLIB_LW_SESSION_CONF_FCNT_UP], this->confFCntUp); LoRaWANNode::hton(&this->bufferSession[RADIOLIB_LW_SESSION_CONF_FCNT_DOWN], this->confFCntDown); LoRaWANNode::hton(&this->bufferSession[RADIOLIB_LW_SESSION_ADR_FCNT], this->adrFCnt); LoRaWANNode::hton(&this->bufferSession[RADIOLIB_LW_SESSION_FCNT_UP], this->fCntUp); // save the current uplink MAC command queue memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_MAC_QUEUE_UL], &this->commandsUp, sizeof(LoRaWANMacCommandQueue_t)); // generate the signature of the Session buffer, and store it in the last two bytes of the Session buffer uint16_t signature = LoRaWANNode::checkSum16(this->bufferSession, RADIOLIB_LW_SESSION_BUF_SIZE - 2); LoRaWANNode::hton(&this->bufferSession[RADIOLIB_LW_SESSION_SIGNATURE], signature); return(this->bufferSession); } int16_t LoRaWANNode::setBufferSession(uint8_t* persistentBuffer) { if(this->isActivated()) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Did not update buffer: session already active"); return(RADIOLIB_ERR_NONE); } int16_t state = LoRaWANNode::checkBufferCommon(persistentBuffer, RADIOLIB_LW_SESSION_BUF_SIZE); RADIOLIB_ASSERT(state); // the Nonces buffer holds a checksum signature - compare this to the signature that is in the session buffer uint16_t signatureNonces = LoRaWANNode::ntoh(&this->bufferNonces[RADIOLIB_LW_NONCES_SIGNATURE]); uint16_t signatureInSession = LoRaWANNode::ntoh(&persistentBuffer[RADIOLIB_LW_SESSION_NONCES_SIGNATURE]); if(signatureNonces != signatureInSession) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("The supplied session buffer does not match the Nonces buffer"); return(RADIOLIB_LORAWAN_SESSION_DISCARDED); } // copy the whole buffer over memcpy(this->bufferSession, persistentBuffer, RADIOLIB_LW_SESSION_BUF_SIZE); //// this code can be used in case breaking chances must be caught: // uint8_t nvm_table_version = this->bufferNonces[RADIOLIB_LW_NONCES_VERSION]; // if (RADIOLIB_LW_NONCES_VERSION_VAL > nvm_table_version) { // // set default values for variables that are new or something // } // pull all authentication keys from persistent storage this->devAddr = LoRaWANNode::ntoh(&this->bufferSession[RADIOLIB_LW_SESSION_DEV_ADDR]); memcpy(this->appSKey, &this->bufferSession[RADIOLIB_LW_SESSION_APP_SKEY], RADIOLIB_AES128_BLOCK_SIZE); memcpy(this->nwkSEncKey, &this->bufferSession[RADIOLIB_LW_SESSION_NWK_SENC_KEY], RADIOLIB_AES128_BLOCK_SIZE); memcpy(this->fNwkSIntKey, &this->bufferSession[RADIOLIB_LW_SESSION_FNWK_SINT_KEY], RADIOLIB_AES128_BLOCK_SIZE); memcpy(this->sNwkSIntKey, &this->bufferSession[RADIOLIB_LW_SESSION_SNWK_SINT_KEY], RADIOLIB_AES128_BLOCK_SIZE); // restore session parameters this->rev = LoRaWANNode::ntoh(&this->bufferSession[RADIOLIB_LW_SESSION_VERSION]); RADIOLIB_DEBUG_PROTOCOL_PRINTLN("LoRaWAN session: v1.%d", this->rev); this->homeNetId = LoRaWANNode::ntoh(&this->bufferSession[RADIOLIB_LW_SESSION_HOMENET_ID]); this->aFCntDown = LoRaWANNode::ntoh(&this->bufferSession[RADIOLIB_LW_SESSION_A_FCNT_DOWN]); this->nFCntDown = LoRaWANNode::ntoh(&this->bufferSession[RADIOLIB_LW_SESSION_N_FCNT_DOWN]); this->confFCntUp = LoRaWANNode::ntoh(&this->bufferSession[RADIOLIB_LW_SESSION_CONF_FCNT_UP]); this->confFCntDown = LoRaWANNode::ntoh(&this->bufferSession[RADIOLIB_LW_SESSION_CONF_FCNT_DOWN]); this->adrFCnt = LoRaWANNode::ntoh(&this->bufferSession[RADIOLIB_LW_SESSION_ADR_FCNT]); this->fCntUp = LoRaWANNode::ntoh(&this->bufferSession[RADIOLIB_LW_SESSION_FCNT_UP]); // restore the complete MAC state // all-zero buffer used for checking if MAC commands are set uint8_t bufferZeroes[RADIOLIB_LW_MAX_MAC_COMMAND_LEN_DOWN] = { 0 }; LoRaWANMacCommand_t cmd = { .cid = 0, .payload = { 0 }, .len = 0, .repeat = 0, }; // for dynamic bands, first restore the defined channels before restoring ADR // this is because the ADR command acts as a mask for the enabled channels if(this->band->bandType == RADIOLIB_LW_BAND_DYNAMIC) { // setup the default channels state = this->setupChannelsDyn(); RADIOLIB_ASSERT(state); // restore the session channels uint8_t *startChannelsUp = &this->bufferSession[RADIOLIB_LW_SESSION_UL_CHANNELS]; cmd.cid = RADIOLIB_LW_MAC_NEW_CHANNEL; for(int i = 0; i < RADIOLIB_LW_NUM_AVAILABLE_CHANNELS; i++) { cmd.len = MacTable[RADIOLIB_LW_MAC_NEW_CHANNEL].lenDn; memcpy(cmd.payload, startChannelsUp + (i * cmd.len), cmd.len); if(memcmp(cmd.payload, bufferZeroes, cmd.len) != 0) { // only execute if it is not all zeroes cmd.repeat = 1; (void)execMacCommand(&cmd); } } uint8_t *startChannelsDown = &this->bufferSession[RADIOLIB_LW_SESSION_DL_CHANNELS]; cmd.cid = RADIOLIB_LW_MAC_DL_CHANNEL; for(int i = 0; i < RADIOLIB_LW_NUM_AVAILABLE_CHANNELS; i++) { cmd.len = MacTable[RADIOLIB_LW_MAC_DL_CHANNEL].lenDn; memcpy(cmd.payload, startChannelsDown + (i * cmd.len), cmd.len); if(memcmp(cmd.payload, bufferZeroes, cmd.len) != 0) { // only execute if it is not all zeroes (void)execMacCommand(&cmd); } } } cmd.cid = RADIOLIB_LW_MAC_TX_PARAM_SETUP, cmd.len = MacTable[RADIOLIB_LW_MAC_TX_PARAM_SETUP].lenDn, memcpy(cmd.payload, &this->bufferSession[RADIOLIB_LW_SESSION_TX_PARAM_SETUP], cmd.len); (void)execMacCommand(&cmd); cmd.cid = RADIOLIB_LW_MAC_LINK_ADR; cmd.len = MacTable[RADIOLIB_LW_MAC_LINK_ADR].lenDn; memcpy(cmd.payload, &this->bufferSession[RADIOLIB_LW_SESSION_LINK_ADR], cmd.len); (void)execMacCommand(&cmd); // for fixed bands, first restore ADR, then the defined channels if(this->band->bandType == RADIOLIB_LW_BAND_FIXED) { // setup the default channels state = this->setupChannelsFix(this->subBand); RADIOLIB_ASSERT(state); // restore the session channels uint8_t *startMACpayload = &this->bufferSession[RADIOLIB_LW_SESSION_UL_CHANNELS]; // there are at most 8 channel masks present cmd.cid = RADIOLIB_LW_MAC_LINK_ADR; for(int i = 0; i < 8; i++) { cmd.len = MacTable[RADIOLIB_LW_MAC_LINK_ADR].lenDn; memcpy(cmd.payload, startMACpayload + (i * cmd.len), cmd.len); // there COULD, according to spec, be an all zeroes ADR command - meh if(memcmp(cmd.payload, bufferZeroes, cmd.len) == 0) { break; } cmd.repeat = (i+1); (void)execMacCommand(&cmd); } } cmd.cid = RADIOLIB_LW_MAC_DUTY_CYCLE; cmd.len = MacTable[RADIOLIB_LW_MAC_DUTY_CYCLE].lenDn; memcpy(cmd.payload, &this->bufferSession[RADIOLIB_LW_SESSION_DUTY_CYCLE], cmd.len); (void)execMacCommand(&cmd); cmd.cid = RADIOLIB_LW_MAC_RX_PARAM_SETUP; cmd.len = MacTable[RADIOLIB_LW_MAC_RX_PARAM_SETUP].lenDn; memcpy(cmd.payload, &this->bufferSession[RADIOLIB_LW_SESSION_RX_PARAM_SETUP], cmd.len); (void)execMacCommand(&cmd); cmd.cid = RADIOLIB_LW_MAC_RX_TIMING_SETUP; cmd.len = MacTable[RADIOLIB_LW_MAC_RX_TIMING_SETUP].lenDn; memcpy(cmd.payload, &this->bufferSession[RADIOLIB_LW_SESSION_RX_TIMING_SETUP], cmd.len); (void)execMacCommand(&cmd); cmd.cid = RADIOLIB_LW_MAC_ADR_PARAM_SETUP; cmd.len = MacTable[RADIOLIB_LW_MAC_ADR_PARAM_SETUP].lenDn; memcpy(cmd.payload, &this->bufferSession[RADIOLIB_LW_SESSION_ADR_PARAM_SETUP], cmd.len); (void)execMacCommand(&cmd); cmd.cid = RADIOLIB_LW_MAC_REJOIN_PARAM_SETUP; cmd.len = MacTable[RADIOLIB_LW_MAC_REJOIN_PARAM_SETUP].lenDn; memcpy(cmd.payload, &this->bufferSession[RADIOLIB_LW_SESSION_REJOIN_PARAM_SETUP], cmd.len); (void)execMacCommand(&cmd); // copy uplink MAC command queue back in place memcpy(&this->commandsUp, &this->bufferSession[RADIOLIB_LW_SESSION_MAC_QUEUE_UL], sizeof(LoRaWANMacCommandQueue_t)); // as both the Nonces and session are restored, revert to active session this->bufferNonces[RADIOLIB_LW_NONCES_ACTIVE] = (uint8_t)true; return(state); } int16_t LoRaWANNode::checkBufferCommon(uint8_t *buffer, uint16_t size) { // check if there are actually values in the buffer size_t i = 0; for(; i < size; i++) { if(buffer[i]) { break; } } if(i == size) { return(RADIOLIB_ERR_NETWORK_NOT_JOINED); } // check integrity of the whole buffer (compare checksum to included checksum) uint16_t checkSum = LoRaWANNode::checkSum16(buffer, size - 2); uint16_t signature = LoRaWANNode::ntoh(&buffer[size - 2]); if(signature != checkSum) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Calculated checksum: %04X, expected: %04X", checkSum, signature); return(RADIOLIB_ERR_CHECKSUM_MISMATCH); } return(RADIOLIB_ERR_NONE); } void LoRaWANNode::activateCommon(uint8_t initialDr) { uint8_t drUp = 0; if(this->band->bandType == RADIOLIB_LW_BAND_DYNAMIC) { // if join datarate is user-specified and valid, select that value if(initialDr != RADIOLIB_LW_DATA_RATE_UNUSED) { if(initialDr >= this->band->txFreqs[0].drMin && initialDr <= this->band->txFreqs[0].drMax) { drUp = initialDr; } else { // if there is no channel that allowed the user-specified datarate, revert to default datarate RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Datarate %d is not valid - using default", initialDr); initialDr = RADIOLIB_LW_DATA_RATE_UNUSED; } } // if there is no (channel that allowed the) user-specified datarate, use a default datarate // we use the floor of the average datarate of the first default channel if(initialDr == RADIOLIB_LW_DATA_RATE_UNUSED) { drUp = (this->band->txFreqs[0].drMin + this->band->txFreqs[0].drMax) / 2; } } else { // if the user specified a certain datarate, check if any of the configured channels allows it if(initialDr != RADIOLIB_LW_DATA_RATE_UNUSED) { uint8_t i = 0; for(; i < RADIOLIB_LW_NUM_AVAILABLE_CHANNELS; i++) { if(this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].enabled) { if(initialDr >= this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].drMin && initialDr <= this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].drMax) { break; } } } // if there is no channel that allowed the user-specified datarate, revert to default datarate if(i == RADIOLIB_LW_NUM_AVAILABLE_CHANNELS) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Datarate %d is not valid - using default", initialDr); initialDr = RADIOLIB_LW_DATA_RATE_UNUSED; } } // if there is no (channel that allowed the) user-specified datarate, use a default datarate // we use the join-request datarate for one of the available channels if(initialDr == RADIOLIB_LW_DATA_RATE_UNUSED) { // randomly select one of 8 or 9 channels and find corresponding datarate uint8_t numChannels = this->band->numTxSpans == 1 ? 8 : 9; uint8_t rand = this->phyLayer->random(numChannels) + 1; // range 1-8 or 1-9 if(rand <= 8) { drUp = this->band->txSpans[0].joinRequestDataRate; // if one of the first 8 channels, select datarate of span 0 } else { drUp = this->band->txSpans[1].joinRequestDataRate; // if ninth channel, select datarate of span 1 } } } LoRaWANMacCommand_t cmd = { .cid = RADIOLIB_LW_MAC_LINK_ADR, .payload = { 0 }, .len = MacTable[RADIOLIB_LW_MAC_LINK_ADR].lenDn, .repeat = 0, }; cmd.payload[0] = (drUp << 4); // set uplink datarate cmd.payload[0] |= 0; // default to max Tx Power cmd.payload[3] = (1 << 7); // set the RFU bit, which means that the channel mask gets ignored (void)execMacCommand(&cmd); cmd.cid = RADIOLIB_LW_MAC_DUTY_CYCLE; cmd.len = MacTable[RADIOLIB_LW_MAC_DUTY_CYCLE].lenDn; uint8_t maxDCyclePower; switch(this->band->dutyCycle) { case(0): maxDCyclePower = 0; break; case(3600): maxDCyclePower = 10; break; case(36000): maxDCyclePower = 7; break; default: maxDCyclePower = 0; break; } cmd.payload[0] = maxDCyclePower; (void)execMacCommand(&cmd); cmd.cid = RADIOLIB_LW_MAC_RX_PARAM_SETUP; cmd.len = MacTable[RADIOLIB_LW_MAC_RX_PARAM_SETUP].lenDn; cmd.payload[0] = (RADIOLIB_LW_RX1_DR_OFFSET << 4); cmd.payload[0] |= this->rx2.drMax; // may be set by user, otherwise band's default upon initialization uint32_t rx2Freq = uint32_t(this->rx2.freq * 10000); LoRaWANNode::hton(&cmd.payload[1], rx2Freq, 3); (void)execMacCommand(&cmd); cmd.cid = RADIOLIB_LW_MAC_RX_TIMING_SETUP; cmd.len = MacTable[RADIOLIB_LW_MAC_RX_TIMING_SETUP].lenDn; cmd.payload[0] = (RADIOLIB_LW_RECEIVE_DELAY_1_MS / 1000); (void)execMacCommand(&cmd); cmd.cid = RADIOLIB_LW_MAC_TX_PARAM_SETUP; cmd.len = MacTable[RADIOLIB_LW_MAC_TX_PARAM_SETUP].lenDn; cmd.payload[0] = (this->band->dwellTimeDn > 0 ? 1 : 0) << 5; cmd.payload[0] |= (this->band->dwellTimeUp > 0 ? 1 : 0) << 4; uint8_t maxEIRPRaw; switch(this->band->powerMax) { case(12): maxEIRPRaw = 2; break; case(14): maxEIRPRaw = 4; break; case(16): maxEIRPRaw = 5; break; case(19): // this option does not exist for the TxParamSetupReq but will be caught during execution maxEIRPRaw = 7; break; case(30): maxEIRPRaw = 13; break; default: maxEIRPRaw = 2; break; } cmd.payload[0] |= maxEIRPRaw; (void)execMacCommand(&cmd); cmd.cid = RADIOLIB_LW_MAC_ADR_PARAM_SETUP; cmd.len = MacTable[RADIOLIB_LW_MAC_ADR_PARAM_SETUP].lenDn; cmd.payload[0] = (RADIOLIB_LW_ADR_ACK_LIMIT_EXP << 4); cmd.payload[0] |= RADIOLIB_LW_ADR_ACK_DELAY_EXP; (void)execMacCommand(&cmd); cmd.cid = RADIOLIB_LW_MAC_REJOIN_PARAM_SETUP; cmd.len = MacTable[RADIOLIB_LW_MAC_REJOIN_PARAM_SETUP].lenDn; cmd.payload[0] = (RADIOLIB_LW_REJOIN_MAX_TIME_N << 4); cmd.payload[0] |= RADIOLIB_LW_REJOIN_MAX_COUNT_N; (void)execMacCommand(&cmd); } void LoRaWANNode::beginOTAA(uint64_t joinEUI, uint64_t devEUI, uint8_t* nwkKey, uint8_t* appKey) { this->joinEUI = joinEUI; this->devEUI = devEUI; memcpy(this->nwkKey, nwkKey, RADIOLIB_AES128_KEY_SIZE); memcpy(this->appKey, appKey, RADIOLIB_AES128_KEY_SIZE); // generate activation key checksum this->keyCheckSum ^= LoRaWANNode::checkSum16(reinterpret_cast(&joinEUI), 8); this->keyCheckSum ^= LoRaWANNode::checkSum16(reinterpret_cast(&devEUI), 8); this->keyCheckSum ^= LoRaWANNode::checkSum16(nwkKey, 16); this->keyCheckSum ^= LoRaWANNode::checkSum16(appKey, 16); this->clearNonces(); this->lwMode = RADIOLIB_LW_MODE_OTAA; this->lwClass = RADIOLIB_LW_CLASS_A; } int16_t LoRaWANNode::activateOTAA(uint8_t joinDr, LoRaWANJoinEvent_t *joinEvent) { // check if there is an active session if(this->isActivated()) { // already activated, don't do anything return(RADIOLIB_ERR_NONE); } if(this->bufferNonces[RADIOLIB_LW_NONCES_ACTIVE]) { // session restored but not yet activated - do so now this->isActive = true; return(RADIOLIB_LORAWAN_SESSION_RESTORED); } int16_t state = RADIOLIB_ERR_UNKNOWN; // either no valid session was found or user forced a new session, so clear all activity this->clearSession(); // starting a new session, so make sure to update event fields already if(joinEvent) { joinEvent->newSession = true; joinEvent->devNonce = this->devNonce; joinEvent->joinNonce = this->joinNonce; } // setup join-request uplink/downlink frequencies and datarates if(this->band->bandType == RADIOLIB_LW_BAND_DYNAMIC) { state = this->setupChannelsDyn(true); } else { state = this->setupChannelsFix(this->subBand); } RADIOLIB_ASSERT(state); // on fixed bands, the join-datarate is specified per specification // therefore, we ignore the value that was specified by the user if(this->band->bandType == RADIOLIB_LW_BAND_FIXED) { joinDr = RADIOLIB_LW_DATA_RATE_UNUSED; } // setup all MAC properties to default values this->activateCommon(joinDr); // select a random pair of Tx/Rx channels state = this->selectChannels(); RADIOLIB_ASSERT(state); // set the physical layer configuration for uplink state = this->setPhyProperties(RADIOLIB_LW_CHANNEL_DIR_UPLINK); RADIOLIB_ASSERT(state); // copy devNonce currently in use uint16_t devNonceUsed = this->devNonce; // build the join-request message uint8_t joinRequestMsg[RADIOLIB_LW_JOIN_REQUEST_LEN]; // set the packet fields joinRequestMsg[0] = RADIOLIB_LW_MHDR_MTYPE_JOIN_REQUEST | RADIOLIB_LW_MHDR_MAJOR_R1; LoRaWANNode::hton(&joinRequestMsg[RADIOLIB_LW_JOIN_REQUEST_JOIN_EUI_POS], this->joinEUI); LoRaWANNode::hton(&joinRequestMsg[RADIOLIB_LW_JOIN_REQUEST_DEV_EUI_POS], this->devEUI); LoRaWANNode::hton(&joinRequestMsg[RADIOLIB_LW_JOIN_REQUEST_DEV_NONCE_POS], devNonceUsed); // add the authentication code uint32_t mic = this->generateMIC(joinRequestMsg, RADIOLIB_LW_JOIN_REQUEST_LEN - sizeof(uint32_t), this->nwkKey); LoRaWANNode::hton(&joinRequestMsg[RADIOLIB_LW_JOIN_REQUEST_LEN - sizeof(uint32_t)], mic); // send it Module* mod = this->phyLayer->getMod(); state = this->phyLayer->transmit(joinRequestMsg, RADIOLIB_LW_JOIN_REQUEST_LEN); this->rxDelayStart = mod->hal->millis(); RADIOLIB_ASSERT(state); RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Join-request sent <-- Rx Delay start"); // join-request successfully sent, so increase & save devNonce this->devNonce += 1; LoRaWANNode::hton(&this->bufferNonces[RADIOLIB_LW_NONCES_DEV_NONCE], this->devNonce); // configure Rx delay for join-accept message - these are re-configured once a valid join-request is received this->rxDelays[0] = RADIOLIB_LW_JOIN_ACCEPT_DELAY_1_MS; this->rxDelays[1] = RADIOLIB_LW_JOIN_ACCEPT_DELAY_2_MS; // handle Rx1 and Rx2 windows - returns RADIOLIB_ERR_NONE if a downlink is received state = downlinkCommon(); RADIOLIB_ASSERT(state); // build the buffer for the reply data uint8_t joinAcceptMsgEnc[RADIOLIB_LW_JOIN_ACCEPT_MAX_LEN]; // check received length size_t lenRx = this->phyLayer->getPacketLength(true); if((lenRx != RADIOLIB_LW_JOIN_ACCEPT_MAX_LEN) && (lenRx != RADIOLIB_LW_JOIN_ACCEPT_MAX_LEN - RADIOLIB_LW_JOIN_ACCEPT_CFLIST_LEN)) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("joinAccept reply length mismatch, expected %dB got %luB", RADIOLIB_LW_JOIN_ACCEPT_MAX_LEN, lenRx); return(RADIOLIB_ERR_DOWNLINK_MALFORMED); } // read the packet state = this->phyLayer->readData(joinAcceptMsgEnc, lenRx); // downlink frames are sent without CRC, which will raise error on SX127x // we can ignore that error if(state != RADIOLIB_ERR_LORA_HEADER_DAMAGED) { RADIOLIB_ASSERT(state); } // check reply message type if((joinAcceptMsgEnc[0] & RADIOLIB_LW_MHDR_MTYPE_MASK) != RADIOLIB_LW_MHDR_MTYPE_JOIN_ACCEPT) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("joinAccept reply message type invalid, expected 0x%02x got 0x%02x", RADIOLIB_LW_MHDR_MTYPE_JOIN_ACCEPT, joinAcceptMsgEnc[0]); return(RADIOLIB_ERR_DOWNLINK_MALFORMED); } // decrypt the join accept message // this is done by encrypting again in ECB mode // the first byte is the MAC header which is not encrypted uint8_t joinAcceptMsg[RADIOLIB_LW_JOIN_ACCEPT_MAX_LEN]; joinAcceptMsg[0] = joinAcceptMsgEnc[0]; RadioLibAES128Instance.init(this->nwkKey); RadioLibAES128Instance.encryptECB(&joinAcceptMsgEnc[1], RADIOLIB_LW_JOIN_ACCEPT_MAX_LEN - 1, &joinAcceptMsg[1]); RADIOLIB_DEBUG_PROTOCOL_PRINTLN("joinAcceptMsg:"); RADIOLIB_DEBUG_PROTOCOL_HEXDUMP(joinAcceptMsg, lenRx); // get current JoinNonce from downlink and previous JoinNonce from persistent storage uint32_t joinNonceNew = LoRaWANNode::ntoh(&joinAcceptMsg[RADIOLIB_LW_JOIN_ACCEPT_JOIN_NONCE_POS], 3); RADIOLIB_DEBUG_PROTOCOL_PRINTLN("JoinNoncePrev: %d, JoinNonce: %d", this->joinNonce, joinNonceNew); // JoinNonce received must be greater than the last JoinNonce heard, else error if((this->joinNonce > 0) && (joinNonceNew <= this->joinNonce)) { return(RADIOLIB_ERR_JOIN_NONCE_INVALID); } this->joinNonce = joinNonceNew; this->homeNetId = LoRaWANNode::ntoh(&joinAcceptMsg[RADIOLIB_LW_JOIN_ACCEPT_HOME_NET_ID_POS], 3); this->devAddr = LoRaWANNode::ntoh(&joinAcceptMsg[RADIOLIB_LW_JOIN_ACCEPT_DEV_ADDR_POS]); // check LoRaWAN revision (the MIC verification depends on this) uint8_t dlSettings = joinAcceptMsg[RADIOLIB_LW_JOIN_ACCEPT_DL_SETTINGS_POS]; this->rev = (dlSettings & RADIOLIB_LW_JOIN_ACCEPT_R_1_1) >> 7; RADIOLIB_DEBUG_PROTOCOL_PRINTLN("LoRaWAN revision: 1.%d", this->rev); // verify MIC if(this->rev == 1) { // 1.1 version, first we need to derive the join accept integrity key uint8_t keyDerivationBuff[RADIOLIB_AES128_BLOCK_SIZE] = { 0 }; keyDerivationBuff[0] = RADIOLIB_LW_JOIN_ACCEPT_JS_INT_KEY; LoRaWANNode::hton(&keyDerivationBuff[1], this->devEUI); RadioLibAES128Instance.init(this->nwkKey); RadioLibAES128Instance.encryptECB(keyDerivationBuff, RADIOLIB_AES128_BLOCK_SIZE, this->jSIntKey); // prepare the buffer for MIC calculation uint8_t micBuff[3*RADIOLIB_AES128_BLOCK_SIZE] = { 0 }; micBuff[0] = RADIOLIB_LW_JOIN_REQUEST_TYPE; LoRaWANNode::hton(&micBuff[1], this->joinEUI); LoRaWANNode::hton(&micBuff[9], devNonceUsed); memcpy(&micBuff[11], joinAcceptMsg, lenRx); if(!verifyMIC(micBuff, lenRx + 11, this->jSIntKey)) { return(RADIOLIB_ERR_CRC_MISMATCH); } } else { // 1.0 version if(!verifyMIC(joinAcceptMsg, lenRx, this->nwkKey)) { return(RADIOLIB_ERR_CRC_MISMATCH); } } LoRaWANMacCommand_t cmd = { .cid = RADIOLIB_LW_MAC_RX_PARAM_SETUP, .payload = { 0 }, .len = MacTable[RADIOLIB_LW_MAC_RX_PARAM_SETUP].lenDn, .repeat = 0, }; cmd.payload[0] = dlSettings & 0x7F; uint32_t rx2Freq = uint32_t(this->rx2.freq * 10000); // default Rx2 frequency LoRaWANNode::hton(&cmd.payload[1], rx2Freq, 3); (void)execMacCommand(&cmd); cmd.cid = RADIOLIB_LW_MAC_RX_TIMING_SETUP; cmd.len = MacTable[RADIOLIB_LW_MAC_RX_TIMING_SETUP].lenDn; cmd.payload[0] = joinAcceptMsg[RADIOLIB_LW_JOIN_ACCEPT_RX_DELAY_POS]; (void)execMacCommand(&cmd); // in case of dynamic band, setup the default channels first if(this->band->bandType == RADIOLIB_LW_BAND_DYNAMIC) { this->setupChannelsDyn(false); } // process CFlist if present if(lenRx == RADIOLIB_LW_JOIN_ACCEPT_MAX_LEN) { uint8_t cfList[RADIOLIB_LW_JOIN_ACCEPT_CFLIST_LEN] = { 0 }; memcpy(&cfList[0], &joinAcceptMsg[RADIOLIB_LW_JOIN_ACCEPT_CFLIST_POS], RADIOLIB_LW_JOIN_ACCEPT_CFLIST_LEN); this->processCFList(cfList); } // if no CFList was received, default or subband are already setup so don't need to do anything else // prepare buffer for key derivation uint8_t keyDerivationBuff[RADIOLIB_AES128_BLOCK_SIZE] = { 0 }; LoRaWANNode::hton(&keyDerivationBuff[RADIOLIB_LW_JOIN_ACCEPT_JOIN_NONCE_POS], joinNonce, 3); // check protocol version (1.0 vs 1.1) if(this->rev == 1) { // 1.1 version, derive the keys LoRaWANNode::hton(&keyDerivationBuff[RADIOLIB_LW_JOIN_ACCEPT_JOIN_EUI_POS], this->joinEUI); LoRaWANNode::hton(&keyDerivationBuff[RADIOLIB_LW_JOIN_ACCEPT_DEV_NONCE_POS], devNonceUsed); keyDerivationBuff[0] = RADIOLIB_LW_JOIN_ACCEPT_APP_S_KEY; RadioLibAES128Instance.init(this->appKey); RadioLibAES128Instance.encryptECB(keyDerivationBuff, RADIOLIB_AES128_BLOCK_SIZE, this->appSKey); keyDerivationBuff[0] = RADIOLIB_LW_JOIN_ACCEPT_F_NWK_S_INT_KEY; RadioLibAES128Instance.init(this->nwkKey); RadioLibAES128Instance.encryptECB(keyDerivationBuff, RADIOLIB_AES128_BLOCK_SIZE, this->fNwkSIntKey); keyDerivationBuff[0] = RADIOLIB_LW_JOIN_ACCEPT_S_NWK_S_INT_KEY; RadioLibAES128Instance.init(this->nwkKey); RadioLibAES128Instance.encryptECB(keyDerivationBuff, RADIOLIB_AES128_BLOCK_SIZE, this->sNwkSIntKey); keyDerivationBuff[0] = RADIOLIB_LW_JOIN_ACCEPT_NWK_S_ENC_KEY; RadioLibAES128Instance.init(this->nwkKey); RadioLibAES128Instance.encryptECB(keyDerivationBuff, RADIOLIB_AES128_BLOCK_SIZE, this->nwkSEncKey); // enqueue the RekeyInd MAC command to be sent in the next uplink LoRaWANMacCommand_t cmd = { .cid = RADIOLIB_LW_MAC_REKEY, .payload = { this->rev }, .len = sizeof(uint8_t), .repeat = 0x01 << RADIOLIB_LW_ADR_ACK_LIMIT_EXP, }; state = pushMacCommand(&cmd, &this->commandsUp); RADIOLIB_ASSERT(state); } else { // 1.0 version, just derive the keys LoRaWANNode::hton(&keyDerivationBuff[RADIOLIB_LW_JOIN_ACCEPT_HOME_NET_ID_POS], this->homeNetId, 3); LoRaWANNode::hton(&keyDerivationBuff[RADIOLIB_LW_JOIN_ACCEPT_DEV_ADDR_POS], devNonceUsed); keyDerivationBuff[0] = RADIOLIB_LW_JOIN_ACCEPT_APP_S_KEY; RadioLibAES128Instance.init(this->nwkKey); RadioLibAES128Instance.encryptECB(keyDerivationBuff, RADIOLIB_AES128_BLOCK_SIZE, this->appSKey); keyDerivationBuff[0] = RADIOLIB_LW_JOIN_ACCEPT_F_NWK_S_INT_KEY; RadioLibAES128Instance.init(this->nwkKey); RadioLibAES128Instance.encryptECB(keyDerivationBuff, RADIOLIB_AES128_BLOCK_SIZE, this->fNwkSIntKey); memcpy(this->sNwkSIntKey, this->fNwkSIntKey, RADIOLIB_AES128_KEY_SIZE); memcpy(this->nwkSEncKey, this->fNwkSIntKey, RADIOLIB_AES128_KEY_SIZE); } // reset all frame counters this->fCntUp = 0; this->aFCntDown = 0; this->nFCntDown = 0; this->confFCntUp = RADIOLIB_LW_FCNT_NONE; this->confFCntDown = RADIOLIB_LW_FCNT_NONE; this->adrFCnt = 0; // save the activation keys checksum, device address & keys as well as JoinAccept values; these are only ever set when joining LoRaWANNode::hton(&this->bufferNonces[RADIOLIB_LW_NONCES_VERSION], RADIOLIB_LW_NONCES_VERSION_VAL); LoRaWANNode::hton(&this->bufferNonces[RADIOLIB_LW_NONCES_MODE], RADIOLIB_LW_MODE_OTAA); LoRaWANNode::hton(&this->bufferNonces[RADIOLIB_LW_NONCES_CLASS], RADIOLIB_LW_CLASS_A); LoRaWANNode::hton(&this->bufferNonces[RADIOLIB_LW_NONCES_PLAN], this->band->bandNum); LoRaWANNode::hton(&this->bufferNonces[RADIOLIB_LW_NONCES_CHECKSUM], this->keyCheckSum); LoRaWANNode::hton(&this->bufferNonces[RADIOLIB_LW_NONCES_JOIN_NONCE], this->joinNonce, 3); this->bufferNonces[RADIOLIB_LW_NONCES_ACTIVE] = (uint8_t)true; // generate the signature of the Nonces buffer, and store it in the last two bytes of the Nonces buffer uint16_t signature = LoRaWANNode::checkSum16(this->bufferNonces, RADIOLIB_LW_NONCES_BUF_SIZE - 2); LoRaWANNode::hton(&this->bufferNonces[RADIOLIB_LW_NONCES_SIGNATURE], signature); // store DevAddr and all keys LoRaWANNode::hton(&this->bufferSession[RADIOLIB_LW_SESSION_DEV_ADDR], this->devAddr); memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_APP_SKEY], this->appSKey, RADIOLIB_AES128_BLOCK_SIZE); memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_NWK_SENC_KEY], this->nwkSEncKey, RADIOLIB_AES128_BLOCK_SIZE); memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_FNWK_SINT_KEY], this->fNwkSIntKey, RADIOLIB_AES128_BLOCK_SIZE); memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_SNWK_SINT_KEY], this->sNwkSIntKey, RADIOLIB_AES128_BLOCK_SIZE); // set the signature of the Nonces buffer in the Session buffer LoRaWANNode::hton(&this->bufferSession[RADIOLIB_LW_SESSION_NONCES_SIGNATURE], signature); // store network parameters LoRaWANNode::hton(&this->bufferSession[RADIOLIB_LW_SESSION_HOMENET_ID], this->homeNetId); LoRaWANNode::hton(&this->bufferSession[RADIOLIB_LW_SESSION_VERSION], this->rev); this->isActive = true; // received join-accept, so update JoinNonce value in event if(joinEvent) { joinEvent->joinNonce = this->joinNonce; } return(RADIOLIB_LORAWAN_NEW_SESSION); } void LoRaWANNode::beginABP(uint32_t addr, uint8_t* fNwkSIntKey, uint8_t* sNwkSIntKey, uint8_t* nwkSEncKey, uint8_t* appSKey) { this->devAddr = addr; memcpy(this->appSKey, appSKey, RADIOLIB_AES128_KEY_SIZE); memcpy(this->nwkSEncKey, nwkSEncKey, RADIOLIB_AES128_KEY_SIZE); if(fNwkSIntKey) { this->rev = 1; memcpy(this->fNwkSIntKey, fNwkSIntKey, RADIOLIB_AES128_KEY_SIZE); } else { memcpy(this->fNwkSIntKey, nwkSEncKey, RADIOLIB_AES128_KEY_SIZE); } if(sNwkSIntKey) { memcpy(this->sNwkSIntKey, sNwkSIntKey, RADIOLIB_AES128_KEY_SIZE); } // generate activation key checksum this->keyCheckSum ^= LoRaWANNode::checkSum16(reinterpret_cast(&addr), 4); this->keyCheckSum ^= LoRaWANNode::checkSum16(nwkSEncKey, 16); this->keyCheckSum ^= LoRaWANNode::checkSum16(appSKey, 16); if(fNwkSIntKey) { this->keyCheckSum ^= LoRaWANNode::checkSum16(fNwkSIntKey, 16); } if(sNwkSIntKey) { this->keyCheckSum ^= LoRaWANNode::checkSum16(sNwkSIntKey, 16); } // clear & set all the device credentials this->clearNonces(); this->lwMode = RADIOLIB_LW_MODE_ABP; this->lwClass = RADIOLIB_LW_CLASS_A; } int16_t LoRaWANNode::activateABP(uint8_t initialDr) { // check if there is an active session if(this->isActivated()) { // already activated, don't do anything return(RADIOLIB_ERR_NONE); } if(this->bufferNonces[RADIOLIB_LW_NONCES_ACTIVE]) { // session restored but not yet activated - do so now this->isActive = true; return(RADIOLIB_LORAWAN_SESSION_RESTORED); } // either no valid session was found or user forced a new session, so clear all activity this->clearSession(); // setup the uplink/downlink channels and initial datarate if(this->band->bandType == RADIOLIB_LW_BAND_DYNAMIC) { this->setupChannelsDyn(); } else { this->setupChannelsFix(this->subBand); } // setup all MAC properties to default values this->activateCommon(initialDr); // reset all frame counters this->fCntUp = 0; this->aFCntDown = 0; this->nFCntDown = 0; this->confFCntUp = RADIOLIB_LW_FCNT_NONE; this->confFCntDown = RADIOLIB_LW_FCNT_NONE; this->adrFCnt = 0; // save the activation keys checksum, mode, class, frequency plan LoRaWANNode::hton(&this->bufferNonces[RADIOLIB_LW_NONCES_VERSION], RADIOLIB_LW_NONCES_VERSION_VAL); LoRaWANNode::hton(&this->bufferNonces[RADIOLIB_LW_NONCES_MODE], RADIOLIB_LW_MODE_ABP); LoRaWANNode::hton(&this->bufferNonces[RADIOLIB_LW_NONCES_CLASS], RADIOLIB_LW_CLASS_A); LoRaWANNode::hton(&this->bufferNonces[RADIOLIB_LW_NONCES_PLAN], this->band->bandNum); LoRaWANNode::hton(&this->bufferNonces[RADIOLIB_LW_NONCES_CHECKSUM], this->keyCheckSum); // new session all good, so set active-bit to true this->bufferNonces[RADIOLIB_LW_NONCES_ACTIVE] = (uint8_t)true; // generate the signature of the Nonces buffer, and store it in the last two bytes of the Nonces buffer uint16_t signature = LoRaWANNode::checkSum16(this->bufferNonces, RADIOLIB_LW_NONCES_BUF_SIZE - 2); LoRaWANNode::hton(&this->bufferNonces[RADIOLIB_LW_NONCES_SIGNATURE], signature); // store DevAddr and all keys LoRaWANNode::hton(&this->bufferSession[RADIOLIB_LW_SESSION_DEV_ADDR], this->devAddr); memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_APP_SKEY], this->appSKey, RADIOLIB_AES128_BLOCK_SIZE); memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_NWK_SENC_KEY], this->nwkSEncKey, RADIOLIB_AES128_BLOCK_SIZE); memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_FNWK_SINT_KEY], this->fNwkSIntKey, RADIOLIB_AES128_BLOCK_SIZE); memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_SNWK_SINT_KEY], this->sNwkSIntKey, RADIOLIB_AES128_BLOCK_SIZE); // set the signature of the Nonces buffer in the Session buffer LoRaWANNode::hton(&this->bufferSession[RADIOLIB_LW_SESSION_NONCES_SIGNATURE], signature); // store network parameters LoRaWANNode::hton(&this->bufferSession[RADIOLIB_LW_SESSION_HOMENET_ID], this->homeNetId); LoRaWANNode::hton(&this->bufferSession[RADIOLIB_LW_SESSION_VERSION], this->rev); this->isActive = true; return(RADIOLIB_LORAWAN_NEW_SESSION); } bool LoRaWANNode::isActivated() { return(this->isActive); } #if defined(RADIOLIB_BUILD_ARDUINO) int16_t LoRaWANNode::uplink(String& str, uint8_t fPort, bool isConfirmed, LoRaWANEvent_t* event) { return(this->uplink(str.c_str(), fPort, isConfirmed, event)); } #endif int16_t LoRaWANNode::uplink(const char* str, uint8_t fPort, bool isConfirmed, LoRaWANEvent_t* event) { return(this->uplink((uint8_t*)str, strlen(str), fPort, isConfirmed, event)); } int16_t LoRaWANNode::uplink(uint8_t* data, size_t len, uint8_t fPort, bool isConfirmed, LoRaWANEvent_t* event) { // if not joined, don't do anything if(!this->isActivated()) { return(RADIOLIB_ERR_NETWORK_NOT_JOINED); } Module* mod = this->phyLayer->getMod(); // check if the Rx windows were closed after sending the previous uplink // this FORCES a user to call downlink() after an uplink() if(this->rxDelayEnd < this->rxDelayStart) { // not enough time elapsed since the last uplink, we may still be in an Rx window return(RADIOLIB_ERR_UPLINK_UNAVAILABLE); } // if adhering to dutyCycle and the time since last uplink + interval has not elapsed, return an error if(this->dutyCycleEnabled && this->rxDelayStart + (RadioLibTime_t)dutyCycleInterval(this->dutyCycle, this->lastToA) > mod->hal->millis()) { return(RADIOLIB_ERR_UPLINK_UNAVAILABLE); } // check destination fPort if(fPort > 0xDF) { return(RADIOLIB_ERR_INVALID_PORT); } // fPort 0 is only allowed for MAC-only payloads if(fPort == RADIOLIB_LW_FPORT_MAC_COMMAND) { if (!this->isMACPayload) { return(RADIOLIB_ERR_INVALID_PORT); } // if this is MAC only payload, continue and reset for next uplink this->isMACPayload = false; } int16_t state = RADIOLIB_ERR_UNKNOWN; // check if there are some MAC commands to piggyback (only when piggybacking onto a application-frame) uint8_t fOptsLen = 0; if(this->commandsUp.numCommands > 0 && fPort != RADIOLIB_LW_FPORT_MAC_COMMAND) { // there are, assume the maximum possible FOpts len for buffer allocation fOptsLen = this->commandsUp.len; } // check maximum payload len as defined in phy if(len > this->band->payloadLenMax[this->dataRates[RADIOLIB_LW_CHANNEL_DIR_UPLINK]]) { return(RADIOLIB_ERR_PACKET_TOO_LONG); // if testing with TS009 specification verification protocol, don't throw error but clip the message // len = this->band->payloadLenMax[this->dataRates[RADIOLIB_LW_CHANNEL_DIR_UPLINK]]; } bool adrAckReq = false; if(this->adrEnabled) { // check if we need to do ADR stuff uint32_t adrLimit = 0x01 << this->adrLimitExp; uint32_t adrDelay = 0x01 << this->adrDelayExp; if((this->fCntUp - this->adrFCnt) >= adrLimit) { adrAckReq = true; } // if we hit the Limit + Delay, try one of three, in order: // set TxPower to max, set DR to min, enable all default channels if ((this->fCntUp - this->adrFCnt) == (adrLimit + adrDelay)) { uint8_t adrStage = 1; while(adrStage != 0) { switch(adrStage) { case(1): { // if the TxPower field has some offset, remove it and switch to maximum power if(this->txPowerSteps > 0) { // set the maximum power supported by both the module and the band state = this->setTxPower(this->txPowerMax); if(state == RADIOLIB_ERR_NONE) { this->txPowerSteps = 0; adrStage = 0; // successfully did some ADR stuff } } if(adrStage == 1) { // if nothing succeeded, proceed to stage 2 adrStage = 2; } } break; case(2): { // try to decrease the datarate if(this->dataRates[RADIOLIB_LW_CHANNEL_DIR_UPLINK] > 0) { if(this->setDatarate(this->dataRates[RADIOLIB_LW_CHANNEL_DIR_UPLINK] - 1) == RADIOLIB_ERR_NONE) { adrStage = 0; // successfully did some ADR stuff } } if(adrStage == 2) { // if nothing succeeded, proceed to stage 3 adrStage = 3; } } break; case(3): { if(this->band->bandType == RADIOLIB_LW_BAND_DYNAMIC) { this->setupChannelsDyn(false); // revert to default frequencies } else { // go back to default selected subband // hopefully it'll help something, but probably not; at least we tried.. this->setupChannelsFix(this->subBand); } adrStage = 0; // nothing else to do, so end the cycle } break; } } // we tried something to improve the range, so increase the ADR frame counter by 'ADR delay' this->adrFCnt += adrDelay; } } // set the physical layer configuration for uplink this->selectChannels(); state = this->setPhyProperties(RADIOLIB_LW_CHANNEL_DIR_UPLINK); RADIOLIB_ASSERT(state); // if dwell time is imposed, calculated expected time on air and cancel if exceeds if(this->dwellTimeEnabledUp && this->phyLayer->getTimeOnAir(RADIOLIB_LW_FRAME_LEN(len, fOptsLen) - 16)/1000 > this->dwellTimeUp) { return(RADIOLIB_ERR_DWELL_TIME_EXCEEDED); } // build the uplink message // the first 16 bytes are reserved for MIC calculation blocks size_t uplinkMsgLen = RADIOLIB_LW_FRAME_LEN(len, fOptsLen); #if RADIOLIB_STATIC_ONLY uint8_t uplinkMsg[RADIOLIB_STATIC_ARRAY_SIZE]; #else uint8_t* uplinkMsg = new uint8_t[uplinkMsgLen]; #endif // set the packet fields if(isConfirmed) { uplinkMsg[RADIOLIB_LW_FHDR_LEN_START_OFFS] = RADIOLIB_LW_MHDR_MTYPE_CONF_DATA_UP; this->confFCntUp = this->fCntUp; } else { uplinkMsg[RADIOLIB_LW_FHDR_LEN_START_OFFS] = RADIOLIB_LW_MHDR_MTYPE_UNCONF_DATA_UP; } uplinkMsg[RADIOLIB_LW_FHDR_LEN_START_OFFS] |= RADIOLIB_LW_MHDR_MAJOR_R1; LoRaWANNode::hton(&uplinkMsg[RADIOLIB_LW_FHDR_DEV_ADDR_POS], this->devAddr); // length of fOpts will be added later uplinkMsg[RADIOLIB_LW_FHDR_FCTRL_POS] = 0x00; if(this->adrEnabled) { uplinkMsg[RADIOLIB_LW_FHDR_FCTRL_POS] |= RADIOLIB_LW_FCTRL_ADR_ENABLED; if(adrAckReq) { uplinkMsg[RADIOLIB_LW_FHDR_FCTRL_POS] |= RADIOLIB_LW_FCTRL_ADR_ACK_REQ; } } // if the saved confirm-fCnt is set, set the ACK bit bool isConfirmingDown = false; if(this->confFCntDown != RADIOLIB_LW_FCNT_NONE) { isConfirmingDown = true; uplinkMsg[RADIOLIB_LW_FHDR_FCTRL_POS] |= RADIOLIB_LW_FCTRL_ACK; } LoRaWANNode::hton(&uplinkMsg[RADIOLIB_LW_FHDR_FCNT_POS], (uint16_t)this->fCntUp); // check if we have some MAC commands to append if(fOptsLen > 0) { // assume maximum possible buffer size uint8_t fOptsBuff[RADIOLIB_LW_FHDR_FOPTS_MAX_LEN]; uint8_t* fOptsPtr = fOptsBuff; // append all MAC replies into fOpts buffer int16_t i = 0; for (; i < this->commandsUp.numCommands; i++) { LoRaWANMacCommand_t cmd = this->commandsUp.commands[i]; memcpy(fOptsPtr, &cmd, 1 + cmd.len); fOptsPtr += cmd.len + 1; } RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Uplink MAC payload (%d commands):", this->commandsUp.numCommands); RADIOLIB_DEBUG_PROTOCOL_HEXDUMP(fOptsBuff, fOptsLen); // pop the commands from back to front for (; i >= 0; i--) { if(this->commandsUp.commands[i].repeat > 0) { this->commandsUp.commands[i].repeat--; } else { deleteMacCommand(this->commandsUp.commands[i].cid, &this->commandsUp); } } uplinkMsgLen = RADIOLIB_LW_FRAME_LEN(len, fOptsLen); uplinkMsg[RADIOLIB_LW_FHDR_FCTRL_POS] |= fOptsLen; // encrypt it processAES(fOptsBuff, fOptsLen, this->nwkSEncKey, &uplinkMsg[RADIOLIB_LW_FHDR_FOPTS_POS], this->fCntUp, RADIOLIB_LW_CHANNEL_DIR_UPLINK, 0x01, true); } // set the fPort uplinkMsg[RADIOLIB_LW_FHDR_FPORT_POS(fOptsLen)] = fPort; // select encryption key based on the target fPort uint8_t* encKey = this->appSKey; if(fPort == RADIOLIB_LW_FPORT_MAC_COMMAND) { encKey = this->nwkSEncKey; } // encrypt the frame payload processAES(data, len, encKey, &uplinkMsg[RADIOLIB_LW_FRAME_PAYLOAD_POS(fOptsLen)], this->fCntUp, RADIOLIB_LW_CHANNEL_DIR_UPLINK, 0x00, true); // create blocks for MIC calculation uint8_t block0[RADIOLIB_AES128_BLOCK_SIZE] = { 0 }; block0[RADIOLIB_LW_BLOCK_MAGIC_POS] = RADIOLIB_LW_MIC_BLOCK_MAGIC; block0[RADIOLIB_LW_BLOCK_DIR_POS] = RADIOLIB_LW_CHANNEL_DIR_UPLINK; LoRaWANNode::hton(&block0[RADIOLIB_LW_BLOCK_DEV_ADDR_POS], this->devAddr); LoRaWANNode::hton(&block0[RADIOLIB_LW_BLOCK_FCNT_POS], this->fCntUp); block0[RADIOLIB_LW_MIC_BLOCK_LEN_POS] = uplinkMsgLen - RADIOLIB_AES128_BLOCK_SIZE - sizeof(uint32_t); uint8_t block1[RADIOLIB_AES128_BLOCK_SIZE] = { 0 }; memcpy(block1, block0, RADIOLIB_AES128_BLOCK_SIZE); if(this->confFCntDown != RADIOLIB_LW_FCNT_NONE) { LoRaWANNode::hton(&block1[RADIOLIB_LW_BLOCK_CONF_FCNT_POS], (uint16_t)this->confFCntDown); } block1[RADIOLIB_LW_MIC_DATA_RATE_POS] = this->dataRates[RADIOLIB_LW_CHANNEL_DIR_UPLINK]; block1[RADIOLIB_LW_MIC_CH_INDEX_POS] = this->currentChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK].idx; RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Uplink (FCntUp = %d) decoded:", this->fCntUp); RADIOLIB_DEBUG_PROTOCOL_HEXDUMP(uplinkMsg, uplinkMsgLen); // calculate authentication codes memcpy(uplinkMsg, block1, RADIOLIB_AES128_BLOCK_SIZE); uint32_t micS = this->generateMIC(uplinkMsg, uplinkMsgLen - sizeof(uint32_t), this->sNwkSIntKey); memcpy(uplinkMsg, block0, RADIOLIB_AES128_BLOCK_SIZE); uint32_t micF = this->generateMIC(uplinkMsg, uplinkMsgLen - sizeof(uint32_t), this->fNwkSIntKey); // check LoRaWAN revision if(this->rev == 1) { uint32_t mic = ((uint32_t)(micF & 0x0000FF00) << 16) | ((uint32_t)(micF & 0x0000000FF) << 16) | ((uint32_t)(micS & 0x0000FF00) >> 0) | ((uint32_t)(micS & 0x0000000FF) >> 0); LoRaWANNode::hton(&uplinkMsg[uplinkMsgLen - sizeof(uint32_t)], mic); } else { LoRaWANNode::hton(&uplinkMsg[uplinkMsgLen - sizeof(uint32_t)], micF); } // perform CSMA if enabled. if (enableCSMA) { performCSMA(); } // send it (without the MIC calculation blocks) state = this->phyLayer->transmit(&uplinkMsg[RADIOLIB_LW_FHDR_LEN_START_OFFS], uplinkMsgLen - RADIOLIB_LW_FHDR_LEN_START_OFFS); // set the timestamp so that we can measure when to start receiving this->rxDelayStart = mod->hal->millis(); RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Uplink sent <-- Rx Delay start"); // calculate Time on Air of this uplink in milliseconds this->lastToA = this->phyLayer->getTimeOnAir(uplinkMsgLen - RADIOLIB_LW_FHDR_LEN_START_OFFS) / 1000; #if !RADIOLIB_STATIC_ONLY delete[] uplinkMsg; #endif RADIOLIB_ASSERT(state); // the downlink confirmation was acknowledged, so clear the counter value this->confFCntDown = RADIOLIB_LW_FCNT_NONE; // pass the extra info if requested if(event) { event->dir = RADIOLIB_LW_CHANNEL_DIR_UPLINK; event->confirmed = isConfirmed; event->confirming = isConfirmingDown; event->datarate = this->dataRates[RADIOLIB_LW_CHANNEL_DIR_UPLINK]; event->freq = currentChannels[event->dir].freq; event->power = this->txPowerMax - this->txPowerSteps * 2; event->fCnt = this->fCntUp; event->fPort = fPort; } // increase frame counter by one for the next uplink this->fCntUp += 1; return(RADIOLIB_ERR_NONE); } int16_t LoRaWANNode::downlinkCommon() { Module* mod = this->phyLayer->getMod(); // according to the spec, the Rx window must be at least enough time to effectively detect a preamble // but we pad it a bit on both sides (start and end) to make sure it is wide enough const RadioLibTime_t scanGuard = 10; // Rx window padding in milliseconds // check if there are any upcoming Rx windows // if the Rx1 window has already started, you're too late, because most downlinks happen in Rx1 RadioLibTime_t now = mod->hal->millis(); // fix the current timestamp to prevent negative delays if(now > this->rxDelayStart + this->rxDelays[0] - scanGuard) { // if between start of Rx1 and end of Rx2, wait until Rx2 closes if(now < this->rxDelayStart + this->rxDelays[1]) { mod->hal->delay(this->rxDelays[1] + this->rxDelayStart - now); } // update the end timestamp in case user got stuck between uplink and downlink this->rxDelayEnd = mod->hal->millis(); return(RADIOLIB_ERR_NO_RX_WINDOW); } // set the physical layer configuration for downlink int16_t state = this->setPhyProperties(RADIOLIB_LW_CHANNEL_DIR_DOWNLINK); RADIOLIB_ASSERT(state); // create the masks that are required for receiving downlinks uint32_t irqFlags = 0; uint32_t irqMask = 0; this->phyLayer->irqRxDoneRxTimeout(irqFlags, irqMask); this->phyLayer->setPacketReceivedAction(LoRaWANNodeOnDownlinkAction); // perform listening in the two Rx windows for(uint8_t i = 0; i < 2; i++) { downlinkAction = false; // calculate the Rx timeout RadioLibTime_t timeoutHost = this->phyLayer->getTimeOnAir(0) + 2*scanGuard*1000; RadioLibTime_t timeoutMod = this->phyLayer->calculateRxTimeout(timeoutHost); // wait for the start of the Rx window RadioLibTime_t waitLen = this->rxDelayStart + this->rxDelays[i] - mod->hal->millis(); // make sure that no underflow occured; if so, clip the delay (although this will likely miss any downlink) if(waitLen > this->rxDelays[i]) { waitLen = this->rxDelays[i]; } // the waiting duration is shortened a bit to cover any possible timing errors if(waitLen > scanGuard) { waitLen -= scanGuard; } mod->hal->delay(waitLen); // open Rx window by starting receive with specified timeout state = this->phyLayer->startReceive(timeoutMod, irqFlags, irqMask, 0); RADIOLIB_ASSERT(state); RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Opening Rx%d window (%d us timeout)... <-- Rx Delay end ", i+1, (int)timeoutHost); // wait for the timeout to complete (and a small additional delay) mod->hal->delay(timeoutHost / 1000 + scanGuard / 2); RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Closing Rx%d window", i+1); // check if the IRQ bit for Rx Timeout is set if(!this->phyLayer->isRxTimeout()) { break; } else if(i == 0) { // nothing in the first window, configure for the second this->phyLayer->standby(); RADIOLIB_DEBUG_PROTOCOL_PRINTLN("PHY: Frequency %cL = %6.3f MHz", 'D', this->rx2.freq); state = this->phyLayer->setFrequency(this->rx2.freq); RADIOLIB_ASSERT(state); DataRate_t dataRate; state = findDataRate(this->rx2.drMax, &dataRate); RADIOLIB_ASSERT(state); state = this->phyLayer->setDataRate(dataRate); RADIOLIB_ASSERT(state); } } // Rx windows are now closed this->rxDelayEnd = mod->hal->millis(); // if we got here due to a timeout, stop ongoing activities if(this->phyLayer->isRxTimeout()) { this->phyLayer->standby(); // TODO check: this should be done automagically due to RxSingle? if(!this->FSK) { this->phyLayer->invertIQ(false); } return(RADIOLIB_LORAWAN_NO_DOWNLINK); } // wait for the DIO to fire indicating a downlink is received now = mod->hal->millis(); bool downlinkComplete = true; while(!downlinkAction) { mod->hal->yield(); // this should never happen, but if it does this would be an infinite loop if(mod->hal->millis() - now > 3000UL) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Downlink missing!"); downlinkComplete = false; break; } } // we have a message, clear actions, go to standby and reset the IQ inversion this->phyLayer->standby(); // TODO check: this should be done automagically due to RxSingle? this->phyLayer->clearPacketReceivedAction(); if(!this->FSK) { state = this->phyLayer->invertIQ(false); RADIOLIB_ASSERT(state); } if(!downlinkComplete) { state = RADIOLIB_LORAWAN_NO_DOWNLINK; } return(state); } #if defined(RADIOLIB_BUILD_ARDUINO) int16_t LoRaWANNode::downlink(String& str, LoRaWANEvent_t* event) { int16_t state = RADIOLIB_ERR_UNKNOWN; // build a temporary buffer // LoRaWAN downlinks can have 250 bytes at most with 1 extra byte for NULL size_t length = 0; uint8_t data[251]; // wait for downlink state = this->downlink(data, &length, event); if(state == RADIOLIB_ERR_NONE) { // add null terminator data[length] = '\0'; // initialize Arduino String class str = String((char*)data); } return(state); } #endif int16_t LoRaWANNode::downlink(LoRaWANEvent_t* event) { int16_t state = RADIOLIB_ERR_UNKNOWN; // build a temporary buffer // LoRaWAN downlinks can have 250 bytes at most with 1 extra byte for NULL size_t length = 0; uint8_t data[251]; // wait for downlink state = this->downlink(data, &length, event); return(state); } int16_t LoRaWANNode::downlink(uint8_t* data, size_t* len, LoRaWANEvent_t* event) { // handle Rx1 and Rx2 windows - returns RADIOLIB_ERR_NONE if a downlink is received int16_t state = downlinkCommon(); RADIOLIB_ASSERT(state); // get the packet length size_t downlinkMsgLen = this->phyLayer->getPacketLength(); // check the minimum required frame length // an extra byte is subtracted because downlink frames may not have a fPort if(downlinkMsgLen < RADIOLIB_LW_FRAME_LEN(0, 0) - 1 - RADIOLIB_AES128_BLOCK_SIZE) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Downlink message too short (%lu bytes)", downlinkMsgLen); return(RADIOLIB_ERR_DOWNLINK_MALFORMED); } // build the buffer for the downlink message // the first 16 bytes are reserved for MIC calculation block #if !RADIOLIB_STATIC_ONLY uint8_t* downlinkMsg = new uint8_t[RADIOLIB_AES128_BLOCK_SIZE + downlinkMsgLen]; #else uint8_t downlinkMsg[RADIOLIB_STATIC_ARRAY_SIZE]; #endif // read the data state = this->phyLayer->readData(&downlinkMsg[RADIOLIB_AES128_BLOCK_SIZE], downlinkMsgLen); // downlink frames are sent without CRC, which will raise error on SX127x // we can ignore that error if(state == RADIOLIB_ERR_LORA_HEADER_DAMAGED) { state = RADIOLIB_ERR_NONE; } if(state != RADIOLIB_ERR_NONE) { #if !RADIOLIB_STATIC_ONLY delete[] downlinkMsg; #endif return(state); } // check the address uint32_t addr = LoRaWANNode::ntoh(&downlinkMsg[RADIOLIB_LW_FHDR_DEV_ADDR_POS]); if(addr != this->devAddr) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Device address mismatch, expected 0x%08X, got 0x%08X", this->devAddr, addr); #if !RADIOLIB_STATIC_ONLY delete[] downlinkMsg; #endif return(RADIOLIB_ERR_DOWNLINK_MALFORMED); } // calculate length of FOpts and payload uint8_t fOptsLen = downlinkMsg[RADIOLIB_LW_FHDR_FCTRL_POS] & RADIOLIB_LW_FHDR_FOPTS_LEN_MASK; // check if the ACK bit is set, indicating this frame acknowledges the previous uplink bool isConfirmingUp = false; if((downlinkMsg[RADIOLIB_LW_FHDR_FCTRL_POS] & RADIOLIB_LW_FCTRL_ACK)) { isConfirmingUp = true; } // total - MHDR(1) - DevAddr(4) - FCtrl(1) - FCnt(2) - FOpts - MIC(4) // potentially also an FPort, but we'll find out soon enough uint8_t payLen = downlinkMsgLen - 1 - 4 - 1 - 2 - fOptsLen - 4; // get the frame counter uint16_t fCnt16 = LoRaWANNode::ntoh(&downlinkMsg[RADIOLIB_LW_FHDR_FCNT_POS]); // set the MIC calculation blocks memset(downlinkMsg, 0x00, RADIOLIB_AES128_BLOCK_SIZE); downlinkMsg[RADIOLIB_LW_BLOCK_MAGIC_POS] = RADIOLIB_LW_MIC_BLOCK_MAGIC; // if this downlink is confirming an uplink, the MIC was generated with the least-significant 16 bits of that fCntUp if(isConfirmingUp && (this->rev == 1)) { LoRaWANNode::hton(&downlinkMsg[RADIOLIB_LW_BLOCK_CONF_FCNT_POS], (uint16_t)this->confFCntUp); } downlinkMsg[RADIOLIB_LW_BLOCK_DIR_POS] = RADIOLIB_LW_CHANNEL_DIR_DOWNLINK; LoRaWANNode::hton(&downlinkMsg[RADIOLIB_LW_BLOCK_DEV_ADDR_POS], this->devAddr); LoRaWANNode::hton(&downlinkMsg[RADIOLIB_LW_BLOCK_FCNT_POS], fCnt16); downlinkMsg[RADIOLIB_LW_MIC_BLOCK_LEN_POS] = downlinkMsgLen - sizeof(uint32_t); // check the MIC if(!verifyMIC(downlinkMsg, RADIOLIB_AES128_BLOCK_SIZE + downlinkMsgLen, this->sNwkSIntKey)) { #if !RADIOLIB_STATIC_ONLY delete[] downlinkMsg; #endif return(RADIOLIB_ERR_CRC_MISMATCH); } // in LoRaWAN v1.1, a frame is a Network frame if there is no Application payload // i.e.: either no payload at all (empty frame or FOpts only), or MAC only payload (FPort = 0) uint8_t fPort = RADIOLIB_LW_FPORT_MAC_COMMAND; bool isAppDownlink = false; if(this->rev == 0) { isAppDownlink = true; } if(payLen > 0) { payLen -= 1; // subtract one as fPort is set fPort = downlinkMsg[RADIOLIB_LW_FHDR_FPORT_POS(fOptsLen)]; if(fPort > RADIOLIB_LW_FPORT_MAC_COMMAND) { isAppDownlink = true; } else { fOptsLen = payLen; } } RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Downlink (%sFCntDown = %d) encoded:", isAppDownlink ? "A" : "N", fCnt16); RADIOLIB_DEBUG_PROTOCOL_HEXDUMP(downlinkMsg, RADIOLIB_AES128_BLOCK_SIZE + downlinkMsgLen); // check the fCntDown value (Network or Application) uint32_t fCntDownPrev = 0; if (isAppDownlink) { fCntDownPrev = this->aFCntDown; } else { fCntDownPrev = this->nFCntDown; } // if this is not the first downlink... // assume a 16-bit to 32-bit rollover if difference between counters in LSB is smaller than MAX_FCNT_GAP // if that isn't the case and the received fCnt is smaller or equal to the last heard fCnt, then error uint32_t fCnt32 = fCnt16; if(fCntDownPrev > 0) { if((fCnt16 <= fCntDownPrev) && ((0xFFFF - (uint16_t)fCntDownPrev + fCnt16) > RADIOLIB_LW_MAX_FCNT_GAP)) { #if !RADIOLIB_STATIC_ONLY delete[] downlinkMsg; #endif if (isAppDownlink) { return(RADIOLIB_ERR_A_FCNT_DOWN_INVALID); } else { return(RADIOLIB_ERR_N_FCNT_DOWN_INVALID); } } else if (fCnt16 <= fCntDownPrev) { uint16_t msb = (fCntDownPrev >> 16) + 1; // assume a rollover fCnt32 |= ((uint32_t)msb << 16); // add back the MSB part } } // save current fCnt to respective frame counter if (isAppDownlink) { this->aFCntDown = fCnt32; } else { this->nFCntDown = fCnt32; } // if this is a confirmed frame, save the downlink number (only app frames can be confirmed) bool isConfirmedDown = false; if((downlinkMsg[RADIOLIB_LW_FHDR_LEN_START_OFFS] & 0xFE) == RADIOLIB_LW_MHDR_MTYPE_CONF_DATA_DOWN) { this->confFCntDown = this->aFCntDown; isConfirmedDown = true; } // process FOpts (if there are any) if(fOptsLen > 0) { // there are some Fopts, decrypt them #if !RADIOLIB_STATIC_ONLY uint8_t* fOpts = new uint8_t[RADIOLIB_MAX(RADIOLIB_LW_FHDR_FOPTS_LEN_MASK, (int)fOptsLen)]; #else uint8_t fOpts[RADIOLIB_STATIC_ARRAY_SIZE]; #endif // TODO it COULD be the case that the assumed FCnt rollover is incorrect, if possible figure out a way to catch this and retry with just fCnt16 // if there are <= 15 bytes of FOpts, they are in the FHDR, otherwise they are in the payload // in case of the latter, process AES is if it were a normal payload but using the NwkSEncKey if(fOptsLen <= RADIOLIB_LW_FHDR_FOPTS_LEN_MASK) { uint8_t ctrId = 0x01 + isAppDownlink; // see LoRaWAN v1.1 errata processAES(&downlinkMsg[RADIOLIB_LW_FHDR_FOPTS_POS], (size_t)fOptsLen, this->nwkSEncKey, fOpts, fCnt32, RADIOLIB_LW_CHANNEL_DIR_DOWNLINK, ctrId, true); } else { processAES(&downlinkMsg[RADIOLIB_LW_FRAME_PAYLOAD_POS(0)], (size_t)fOptsLen, this->nwkSEncKey, fOpts, fCnt32, RADIOLIB_LW_CHANNEL_DIR_DOWNLINK, 0x00, true); } bool hasADR = false; uint8_t numADR = 0; uint8_t lastCID = 0; // process the MAC command(s) int8_t remLen = fOptsLen; uint8_t* fOptsPtr = fOpts; while(remLen > 0) { uint8_t cid = *fOptsPtr; uint8_t macLen = getMacPayloadLength(cid); if(cid == RADIOLIB_LW_MAC_LINK_ADR) { // if there was an earlier ADR command but it was not the last, ignore it if(hasADR && lastCID != RADIOLIB_LW_MAC_LINK_ADR) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Encountered non-consecutive block of ADR commands - skipping"); remLen -= (macLen + 1); fOptsPtr += (macLen + 1); lastCID = cid; continue; } // otherwise, set ADR flag to true and increase counter hasADR = true; numADR++; } if(macLen + 1 > remLen) break; LoRaWANMacCommand_t cmd = { .cid = cid, .payload = { 0 }, .len = macLen, .repeat = (cid == RADIOLIB_LW_MAC_LINK_ADR ? numADR : (uint8_t)0), }; memcpy(cmd.payload, fOptsPtr + 1, macLen); // process the MAC command bool sendUp = execMacCommand(&cmd); if(sendUp) { pushMacCommand(&cmd, &this->commandsUp); } // processing succeeded, move in the buffer to the next command remLen -= (macLen + 1); fOptsPtr += (macLen + 1); lastCID = cid; } #if !RADIOLIB_STATIC_ONLY delete[] fOpts; #endif // if fOptsLen for the next uplink is larger than can be piggybacked onto an uplink, send separate uplink if(this->commandsUp.len > RADIOLIB_LW_FHDR_FOPTS_MAX_LEN) { size_t fOptsBufSize = this->commandsUp.len; #if RADIOLIB_STATIC_ONLY uint8_t fOptsBuff[RADIOLIB_STATIC_ARRAY_SIZE]; #else uint8_t* fOptsBuff = new uint8_t[fOptsBufSize]; #endif uint8_t* fOptsPtr = fOptsBuff; // append all MAC replies into fOpts buffer int16_t i = 0; for (; i < this->commandsUp.numCommands; i++) { LoRaWANMacCommand_t cmd = this->commandsUp.commands[i]; memcpy(fOptsPtr, &cmd, 1 + cmd.len); fOptsPtr += cmd.len + 1; } RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Uplink MAC payload (%d commands):", this->commandsUp.numCommands); RADIOLIB_DEBUG_PROTOCOL_HEXDUMP(fOptsBuff, fOptsBufSize); // pop the commands from back to front for (; i >= 0; i--) { if(this->commandsUp.commands[i].repeat > 0) { this->commandsUp.commands[i].repeat--; } else { deleteMacCommand(this->commandsUp.commands[i].cid, &this->commandsUp); } } this->isMACPayload = true; // temporarily lift dutyCycle restrictions to allow immediate MAC response bool prevDC = this->dutyCycleEnabled; this->dutyCycleEnabled = false; RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Sending MAC-only uplink .. "); state = this->uplink(fOptsBuff, fOptsBufSize, RADIOLIB_LW_FPORT_MAC_COMMAND); RADIOLIB_DEBUG_PROTOCOL_PRINTLN(" .. state: %d", state); this->dutyCycleEnabled = prevDC; #if !RADIOLIB_STATIC_ONLY delete[] fOptsBuff; #endif #if RADIOLIB_STATIC_ONLY uint8_t strDown[RADIOLIB_STATIC_ARRAY_SIZE]; #else uint8_t* strDown = new uint8_t[this->band->payloadLenMax[this->dataRates[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK]]]; #endif size_t lenDown = 0; RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Receiving after MAC-only uplink .. "); state = this->downlink(strDown, &lenDown); RADIOLIB_DEBUG_PROTOCOL_PRINTLN(" .. state: %d", state); #if !RADIOLIB_STATIC_ONLY delete[] strDown; #endif RADIOLIB_ASSERT(state); } } // a downlink was received, so reset the ADR counter to the last uplink's fCnt this->adrFCnt = this->getFCntUp(); // pass the extra info if requested if(event) { event->dir = RADIOLIB_LW_CHANNEL_DIR_DOWNLINK; event->confirmed = isConfirmedDown; event->confirming = isConfirmingUp; event->datarate = this->dataRates[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK]; event->freq = currentChannels[event->dir].freq; event->power = this->txPowerMax - this->txPowerSteps * 2; event->fCnt = isAppDownlink ? this->aFCntDown : this->nFCntDown; event->fPort = fPort; } // if MAC-only payload, return now if(fPort == RADIOLIB_LW_FPORT_MAC_COMMAND) { // no payload *len = 0; #if !RADIOLIB_STATIC_ONLY delete[] downlinkMsg; #endif return(RADIOLIB_ERR_NONE); } // process Application payload *len = payLen; // TODO it COULD be the case that the assumed rollover is incorrect, then figure out a way to catch this and retry with just fCnt16 processAES(&downlinkMsg[RADIOLIB_LW_FRAME_PAYLOAD_POS(fOptsLen)], payLen, this->appSKey, data, fCnt32, RADIOLIB_LW_CHANNEL_DIR_DOWNLINK, 0x00, true); #if !RADIOLIB_STATIC_ONLY delete[] downlinkMsg; #endif return(RADIOLIB_ERR_NONE); } #if defined(RADIOLIB_BUILD_ARDUINO) int16_t LoRaWANNode::sendReceive(String& strUp, uint8_t fPort, String& strDown, bool isConfirmed, LoRaWANEvent_t* eventUp, LoRaWANEvent_t* eventDown) { // send the uplink int16_t state = this->uplink(strUp, fPort, isConfirmed, eventUp); RADIOLIB_ASSERT(state); // wait for the downlink state = this->downlink(strDown, eventDown); return(state); } #endif int16_t LoRaWANNode::sendReceive(uint8_t* dataUp, size_t lenUp, uint8_t fPort, bool isConfirmed, LoRaWANEvent_t* eventUp, LoRaWANEvent_t* eventDown) { // send the uplink int16_t state = this->uplink(dataUp, lenUp, fPort, isConfirmed, eventUp); RADIOLIB_ASSERT(state); // wait for the downlink state = this->downlink(eventDown); return(state); } int16_t LoRaWANNode::sendReceive(const char* strUp, uint8_t fPort, uint8_t* dataDown, size_t* lenDown, bool isConfirmed, LoRaWANEvent_t* eventUp, LoRaWANEvent_t* eventDown) { // send the uplink int16_t state = this->uplink(strUp, fPort, isConfirmed, eventUp); RADIOLIB_ASSERT(state); // wait for the downlink state = this->downlink(dataDown, lenDown, eventDown); return(state); } int16_t LoRaWANNode::sendReceive(uint8_t* dataUp, size_t lenUp, uint8_t fPort, uint8_t* dataDown, size_t* lenDown, bool isConfirmed, LoRaWANEvent_t* eventUp, LoRaWANEvent_t* eventDown) { // send the uplink int16_t state = this->uplink(dataUp, lenUp, fPort, isConfirmed, eventUp); RADIOLIB_ASSERT(state); // wait for the downlink state = this->downlink(dataDown, lenDown, eventDown); return(state); } void LoRaWANNode::setDeviceStatus(uint8_t battLevel) { this->battLevel = battLevel; } // return fCnt of last uplink; also return 0 if no uplink occured yet uint32_t LoRaWANNode::getFCntUp() { if(this->fCntUp == 0) { return(0); } return(this->fCntUp - 1); } uint32_t LoRaWANNode::getNFCntDown() { return(this->nFCntDown); } uint32_t LoRaWANNode::getAFCntDown() { return(this->aFCntDown); } void LoRaWANNode::resetFCntDown() { this->nFCntDown = 0; this->aFCntDown = 0; } uint32_t LoRaWANNode::generateMIC(uint8_t* msg, size_t len, uint8_t* key) { if((msg == NULL) || (len == 0)) { return(0); } RadioLibAES128Instance.init(key); uint8_t cmac[RADIOLIB_AES128_BLOCK_SIZE]; RadioLibAES128Instance.generateCMAC(msg, len, cmac); return(((uint32_t)cmac[0]) | ((uint32_t)cmac[1] << 8) | ((uint32_t)cmac[2] << 16) | ((uint32_t)cmac[3]) << 24); } bool LoRaWANNode::verifyMIC(uint8_t* msg, size_t len, uint8_t* key) { if((msg == NULL) || (len < sizeof(uint32_t))) { return(0); } // extract MIC from the message uint32_t micReceived = LoRaWANNode::ntoh(&msg[len - sizeof(uint32_t)]); // calculate the expected value and compare uint32_t micCalculated = generateMIC(msg, len - sizeof(uint32_t), key); if(micCalculated != micReceived) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("MIC mismatch, expected %08x, got %08x", micCalculated, micReceived); return(false); } return(true); } int16_t LoRaWANNode::setPhyProperties(uint8_t dir) { // set the physical layer configuration RADIOLIB_DEBUG_PROTOCOL_PRINTLN(""); RADIOLIB_DEBUG_PROTOCOL_PRINTLN("PHY: Frequency %cL = %6.3f MHz", dir ? 'D' : 'U', this->currentChannels[dir].freq); int16_t state = this->phyLayer->setFrequency(this->currentChannels[dir].freq); RADIOLIB_ASSERT(state); // if this channel is an FSK channel, toggle the FSK switch if(this->band->dataRates[this->dataRates[dir]] == RADIOLIB_LW_DATA_RATE_FSK_50_K) { this->FSK = true; } else { this->FSK = false; } int8_t pwr = this->txPowerMax - this->txPowerSteps * 2; // at this point, assume that Tx power value is already checked, so ignore the return value (void)this->phyLayer->checkOutputPower(pwr, &pwr); state = this->phyLayer->setOutputPower(pwr); RADIOLIB_ASSERT(state); DataRate_t dr; state = findDataRate(this->dataRates[dir], &dr); RADIOLIB_ASSERT(state); state = this->phyLayer->setDataRate(dr); RADIOLIB_ASSERT(state); RADIOLIB_DEBUG_PROTOCOL_PRINTLN("PHY: SF = %d, TX = %d dBm, BW = %6.3f kHz, CR = 4/%d", dr.lora.spreadingFactor, pwr, dr.lora.bandwidth, dr.lora.codingRate); if(this->FSK) { state = this->phyLayer->setDataShaping(RADIOLIB_SHAPING_1_0); RADIOLIB_ASSERT(state); state = this->phyLayer->setEncoding(RADIOLIB_ENCODING_WHITENING); } // downlink messages are sent with inverted IQ if(dir == RADIOLIB_LW_CHANNEL_DIR_DOWNLINK) { if(!this->FSK) { state = this->phyLayer->invertIQ(true); RADIOLIB_ASSERT(state); } } // this only needs to be done once-ish uint8_t syncWord[3] = { 0 }; uint8_t syncWordLen = 0; size_t preLen = 0; if(this->FSK) { preLen = 8*RADIOLIB_LW_GFSK_PREAMBLE_LEN; syncWord[0] = (uint8_t)(RADIOLIB_LW_GFSK_SYNC_WORD >> 16); syncWord[1] = (uint8_t)(RADIOLIB_LW_GFSK_SYNC_WORD >> 8); syncWord[2] = (uint8_t)RADIOLIB_LW_GFSK_SYNC_WORD; syncWordLen = 3; } else { preLen = RADIOLIB_LW_LORA_PREAMBLE_LEN; syncWord[0] = RADIOLIB_LW_LORA_SYNC_WORD; syncWordLen = 1; } state = this->phyLayer->setSyncWord(syncWord, syncWordLen); RADIOLIB_ASSERT(state); state = this->phyLayer->setPreambleLength(preLen); return(state); } int16_t LoRaWANNode::setupChannelsDyn(bool joinRequest) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Setting up dynamic channels"); size_t num = 0; // copy the default defined channels into the first slots (where Tx = Rx) for(; num < 3 && this->band->txFreqs[num].enabled; num++) { this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][num] = this->band->txFreqs[num]; this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][num] = this->band->txFreqs[num]; } // if we're about to send a join-request, copy the join-request channels to the next slots if(joinRequest) { size_t numJR = 0; for(; numJR < 3 && this->band->txJoinReq[num].enabled; numJR++, num++) { this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][num] = this->band->txFreqs[num]; this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][num] = this->band->txFreqs[num]; } } // clear all remaining channels for(; num < RADIOLIB_LW_NUM_AVAILABLE_CHANNELS; num++) { this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][num] = RADIOLIB_LW_CHANNEL_NONE; } for (int i = 0; i < RADIOLIB_LW_NUM_AVAILABLE_CHANNELS; i++) { if(this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].enabled) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("UL: %3d %d %7.3f (%d - %d) | DL: %3d %d %7.3f (%d - %d)", this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].idx, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].enabled, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].freq, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].drMin, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].drMax, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][i].idx, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][i].enabled, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][i].freq, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][i].drMin, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][i].drMax ); } } return(RADIOLIB_ERR_NONE); } // setup a subband and its corresponding join-request datarate // WARNING: subBand starts at 1 (corresponds to all populair schemes) int16_t LoRaWANNode::setupChannelsFix(uint8_t subBand) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Setting up fixed channels (subband %d)", subBand); // clear all existing channels for(size_t i = 0; i < RADIOLIB_LW_NUM_AVAILABLE_CHANNELS; i++) { this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i] = RADIOLIB_LW_CHANNEL_NONE; } // if no subband is selected by user, cycle through banks of 8 using devNonce value if(subBand == 0) { uint8_t numBanks8 = this->band->txSpans[0].numChannels / 8; subBand = this->devNonce % numBanks8; } uint8_t chMaskCntl = 0; uint16_t chMask = 0; // if there are two channel spans, first set the channel from second span if(this->band->numTxSpans == 2) { chMaskCntl = 7; chMask = (1 << (subBand - 1)); // set channel mask this->applyChannelMaskFix(chMaskCntl, chMask); } // chMask is set for 16 channels at once, so widen the Cntl value chMaskCntl = (subBand - 1) / 2; // compensate the 1 offset // now select the correct bank of 8 channels if(subBand % 2 == 0) { // even subbands chMask = 0xFF00; } else { chMask = 0x00FF; // odd subbands } this->applyChannelMaskFix(chMaskCntl, chMask); return(RADIOLIB_ERR_NONE); } int16_t LoRaWANNode::processCFList(uint8_t* cfList) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Processing CFList"); if(this->band->bandType == RADIOLIB_LW_BAND_DYNAMIC) { // retrieve number of existing (default) channels size_t num = 0; for(int i = 0; i < RADIOLIB_LW_NUM_AVAILABLE_CHANNELS; i++) { if(!this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].enabled) { break; } num++; } LoRaWANMacCommand_t cmd = { .cid = RADIOLIB_LW_MAC_NEW_CHANNEL, .payload = { 0 }, .len = 0, .repeat = 0, }; // datarate range for all new channels is equal to the default channels cmd.payload[4] = (this->band->txFreqs[0].drMax << 4) | this->band->txFreqs[0].drMin; for(uint8_t i = 0; i < 5; i++, num++) { cmd.len = MacTable[RADIOLIB_LW_MAC_NEW_CHANNEL].lenDn; cmd.payload[0] = num; memcpy(&cmd.payload[1], &cfList[i*3], 3); (void)execMacCommand(&cmd); } } else { // RADIOLIB_LW_BAND_FIXED // complete channel mask received, so clear all existing channels for(int i = 0; i < RADIOLIB_LW_NUM_AVAILABLE_CHANNELS; i++) { this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i] = RADIOLIB_LW_CHANNEL_NONE; } LoRaWANMacCommand_t cmd = { .cid = RADIOLIB_LW_MAC_LINK_ADR, .payload = { 0 }, .len = 0, .repeat = 0, }; // in case of mask-type bands, copy those frequencies that are masked true into the available TX channels size_t numChMasks = 3 + this->band->numTxSpans; // 4 masks for bands with 2 spans, 5 spans for bands with 1 span for(size_t chMaskCntl = 0; chMaskCntl < numChMasks; chMaskCntl++) { cmd.len = MacTable[RADIOLIB_LW_MAC_LINK_ADR].lenDn; cmd.payload[0] = 0xFF; // same datarate and payload memcpy(&cmd.payload[1], &cfList[chMaskCntl*2], 2); // copy mask cmd.payload[3] = chMaskCntl << 4; // set chMaskCntl, set NbTrans = 0 -> keep the same cmd.repeat = (chMaskCntl + 1); (void)execMacCommand(&cmd); } } return(RADIOLIB_ERR_NONE); } int16_t LoRaWANNode::selectChannels() { // figure out which channel IDs are enabled (chMask may have disabled some) and are valid for the current datarate uint8_t numChannels = 0; uint8_t channelsEnabled[RADIOLIB_LW_NUM_AVAILABLE_CHANNELS]; for(uint8_t i = 0; i < RADIOLIB_LW_NUM_AVAILABLE_CHANNELS; i++) { if(this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].enabled) { if(this->dataRates[RADIOLIB_LW_CHANNEL_DIR_UPLINK] >= this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].drMin && this->dataRates[RADIOLIB_LW_CHANNEL_DIR_UPLINK] <= this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].drMax) { channelsEnabled[numChannels] = i; numChannels++; } } } if(numChannels == 0) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("There are no channels defined - are you in ABP mode with no defined subband?"); return(RADIOLIB_ERR_INVALID_CHANNEL); } // select a random ID & channel from the list of enabled and possible channels uint8_t channelID = channelsEnabled[this->phyLayer->random(numChannels)]; this->currentChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK] = this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][channelID]; if(this->band->bandType == RADIOLIB_LW_BAND_DYNAMIC) { // for dynamic bands, the downlink channel is the one matched to the uplink channel this->currentChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK] = this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][channelID]; } else { // RADIOLIB_LW_BAND_FIXED // for fixed bands, the downlink channel is the uplink channel ID `modulo` number of downlink channels LoRaWANChannel_t channelDn; channelDn.enabled = true; channelDn.idx = this->currentChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK].idx % this->band->rx1Span.numChannels; channelDn.freq = this->band->rx1Span.freqStart + channelDn.idx*this->band->rx1Span.freqStep; channelDn.drMin = this->band->rx1Span.drMin; channelDn.drMax = this->band->rx1Span.drMax; this->currentChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK] = channelDn; } uint8_t drDown = getDownlinkDataRate(this->dataRates[RADIOLIB_LW_CHANNEL_DIR_UPLINK], this->rx1DrOffset, this->band->rx1DataRateBase, this->currentChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK].drMin, this->currentChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK].drMax); this->dataRates[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK] = drDown; return(RADIOLIB_ERR_NONE); } int16_t LoRaWANNode::setDatarate(uint8_t drUp) { // scan through all enabled channels and check if the requested datarate is available bool isValidDR = false; for(size_t i = 0; i < RADIOLIB_LW_NUM_AVAILABLE_CHANNELS; i++) { LoRaWANChannel_t *chnl = &(this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i]); if(chnl->enabled) { if(drUp >= chnl->drMin && drUp <= chnl->drMax) { isValidDR = true; break; } } } if(!isValidDR) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("No defined channel allows datarate %d", drUp); return(RADIOLIB_ERR_INVALID_DATA_RATE); } LoRaWANMacCommand_t cmd = { .cid = RADIOLIB_LW_MAC_LINK_ADR, .payload = { 0 }, .len = MacTable[RADIOLIB_LW_MAC_LINK_ADR].lenDn, .repeat = 0, }; cmd.payload[0] = (drUp << 4); cmd.payload[0] |= 0x0F; // keep Tx Power the same cmd.payload[3] = (1 << 7); // set the RFU bit, which means that the channel mask gets ignored cmd.payload[3] |= 0; // keep NbTrans the same (void)execMacCommand(&cmd); // check if ACK is set for Tx Power if((cmd.payload[0] >> 1) != 1) { return(RADIOLIB_ERR_INVALID_DATA_RATE); } return(RADIOLIB_ERR_NONE); } void LoRaWANNode::setADR(bool enable) { this->adrEnabled = enable; } void LoRaWANNode::setDutyCycle(bool enable, RadioLibTime_t msPerHour) { this->dutyCycleEnabled = enable; if(!enable) { this->dutyCycle = 0; } if(msPerHour <= 0) { this->dutyCycle = this->band->dutyCycle; } else { this->dutyCycle = msPerHour; } } // given an airtime in milliseconds, calculate the minimum uplink interval // to adhere to a given dutyCycle RadioLibTime_t LoRaWANNode::dutyCycleInterval(RadioLibTime_t msPerHour, RadioLibTime_t airtime) { if(msPerHour == 0 || airtime == 0) { return(0); } RadioLibTime_t oneHourInMs = (RadioLibTime_t)60 * (RadioLibTime_t)60 * (RadioLibTime_t)1000; float numPackets = msPerHour / airtime; RadioLibTime_t delayMs = oneHourInMs / numPackets + 1; // + 1 to prevent rounding problems return(delayMs); } RadioLibTime_t LoRaWANNode::timeUntilUplink() { Module* mod = this->phyLayer->getMod(); RadioLibTime_t nextUplink = this->rxDelayStart + dutyCycleInterval(this->dutyCycle, this->lastToA); if(mod->hal->millis() > nextUplink){ return(0); } return(nextUplink - mod->hal->millis() + 1); } void LoRaWANNode::setDwellTime(bool enable, RadioLibTime_t msPerUplink) { this->dwellTimeEnabledUp = enable; if(msPerUplink <= 0) { this->dwellTimeUp = this->band->dwellTimeUp; } else { this->dwellTimeUp = msPerUplink; } } uint8_t LoRaWANNode::maxPayloadDwellTime() { // configure current datarate DataRate_t dr; // TODO this may fail horribly? (void)findDataRate(this->dataRates[RADIOLIB_LW_CHANNEL_DIR_UPLINK], &dr); (void)this->phyLayer->setDataRate(dr); uint8_t minPayLen = 0; uint8_t maxPayLen = 255; uint8_t payLen = (minPayLen + maxPayLen) / 2; // do some binary search to find maximum allowed payload length while(payLen != minPayLen && payLen != maxPayLen) { if(this->phyLayer->getTimeOnAir(payLen) > this->dwellTimeUp) { maxPayLen = payLen; } else { minPayLen = payLen; } payLen = (minPayLen + maxPayLen) / 2; } return(payLen - 13); // fixed 13-byte header } int16_t LoRaWANNode::setTxPower(int8_t txPower) { // only allow values within the band's (or MAC state) maximum if(txPower > this->txPowerMax) { return(RADIOLIB_ERR_INVALID_OUTPUT_POWER); } // Tx Power is set in steps of two // the selected value is rounded down to nearest multiple of two away from txPowerMax // e.g. on EU868, max is 16; if 13 is selected then we set to 12 uint8_t numSteps = (this->txPowerMax - txPower + 1) / (-RADIOLIB_LW_POWER_STEP_SIZE_DBM); LoRaWANMacCommand_t cmd = { .cid = RADIOLIB_LW_MAC_LINK_ADR, .payload = { 0 }, .len = MacTable[RADIOLIB_LW_MAC_LINK_ADR].lenDn, .repeat = 0, }; cmd.payload[0] = 0xF0; // keep datarate the same cmd.payload[0] |= numSteps; // set the Tx Power cmd.payload[3] = (1 << 7); // set the RFU bit, which means that the channel mask gets ignored cmd.payload[3] |= 0; // keep NbTrans the same (void)execMacCommand(&cmd); // check if ACK is set for Tx Power if((cmd.payload[0] >> 2) != 1) { return(RADIOLIB_ERR_INVALID_OUTPUT_POWER); } return(RADIOLIB_ERR_NONE); } int16_t LoRaWANNode::findDataRate(uint8_t dr, DataRate_t* dataRate) { int16_t state = RADIOLIB_ERR_UNKNOWN; uint8_t dataRateBand = this->band->dataRates[dr]; if(dataRateBand & RADIOLIB_LW_DATA_RATE_FSK_50_K) { dataRate->fsk.bitRate = 50; dataRate->fsk.freqDev = 25; } else { uint8_t bw = dataRateBand & 0x0C; switch(bw) { case(RADIOLIB_LW_DATA_RATE_BW_125_KHZ): dataRate->lora.bandwidth = 125.0; break; case(RADIOLIB_LW_DATA_RATE_BW_250_KHZ): dataRate->lora.bandwidth = 250.0; break; case(RADIOLIB_LW_DATA_RATE_BW_500_KHZ): dataRate->lora.bandwidth = 500.0; break; default: dataRate->lora.bandwidth = 125.0; } dataRate->lora.spreadingFactor = ((dataRateBand & 0x70) >> 4) + 6; dataRate->lora.codingRate = (dataRateBand & 0x03) + 5; } state = this->phyLayer->checkDataRate(*dataRate); return(state); } int16_t LoRaWANNode::sendMacCommandReq(uint8_t cid) { bool valid = false; for(size_t i = 0; i < RADIOLIB_LW_NUM_MAC_COMMANDS; i++) { if(MacTable[i].cid == cid) { valid = MacTable[i].user; } } if(!valid) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("You are not allowed to request this MAC command"); return(RADIOLIB_ERR_INVALID_CID); } // if there are already 15 MAC bytes in the uplink queue, we can't add a new one if(this->commandsUp.len + 1 > RADIOLIB_LW_FHDR_FOPTS_MAX_LEN) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("The maximum number of FOpts payload was reached"); return(RADIOLIB_ERR_COMMAND_QUEUE_FULL); } if(this->commandsUp.numCommands > RADIOLIB_LW_MAC_COMMAND_QUEUE_SIZE) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("The RadioLib internal MAC command queue was full"); return(RADIOLIB_ERR_COMMAND_QUEUE_FULL); } // delete any prior requests for this MAC command, in case this is requested more than once (void)deleteMacCommand(cid, &this->commandsUp); LoRaWANMacCommand_t cmd = { .cid = cid, .payload = { 0 }, .len = 0, .repeat = 0, }; pushMacCommand(&cmd, &this->commandsUp); return(true); } int16_t LoRaWANNode::pushMacCommand(LoRaWANMacCommand_t* cmd, LoRaWANMacCommandQueue_t* queue) { if(queue->numCommands >= RADIOLIB_LW_MAC_COMMAND_QUEUE_SIZE) { return(RADIOLIB_ERR_COMMAND_QUEUE_FULL); } memcpy(&queue->commands[queue->numCommands], cmd, sizeof(LoRaWANMacCommand_t)); queue->numCommands++; queue->len += 1 + cmd->len; // 1 byte for command ID, len bytes for payload return(RADIOLIB_ERR_NONE); } int16_t LoRaWANNode::deleteMacCommand(uint8_t cid, LoRaWANMacCommandQueue_t* queue, uint8_t* payload) { for(size_t index = 0; index < queue->numCommands; index++) { if(queue->commands[index].cid == cid) { // if a pointer to a payload is supplied, copy the command's payload over if(payload) { memcpy(payload, queue->commands[index].payload, queue->commands[index].len); } queue->len -= (1 + queue->commands[index].len); // 1 byte for command ID, len for payload // move all subsequent commands one forward in the queue if(index < RADIOLIB_LW_MAC_COMMAND_QUEUE_SIZE - 1) { memmove(&queue->commands[index], &queue->commands[index + 1], (RADIOLIB_LW_MAC_COMMAND_QUEUE_SIZE - index - 1) * sizeof(LoRaWANMacCommand_t)); } // set the latest element to all 0 memset(&queue->commands[RADIOLIB_LW_MAC_COMMAND_QUEUE_SIZE - 1], 0x00, sizeof(LoRaWANMacCommand_t)); queue->numCommands--; return(RADIOLIB_ERR_NONE); } } return(RADIOLIB_ERR_COMMAND_QUEUE_ITEM_NOT_FOUND); } bool LoRaWANNode::execMacCommand(LoRaWANMacCommand_t* cmd) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("[MAC] 0x%02X", cmd->cid); RADIOLIB_DEBUG_PROTOCOL_HEXDUMP(cmd->payload, cmd->len); if(cmd->cid >= RADIOLIB_LW_MAC_PROPRIETARY) { // TODO call user-provided callback for proprietary MAC commands? return(false); } switch(cmd->cid) { case(RADIOLIB_LW_MAC_RESET): { // get the server version uint8_t srvVersion = cmd->payload[0]; RADIOLIB_DEBUG_PROTOCOL_PRINTLN("ResetConf: server version 1.%d", srvVersion); if(srvVersion == this->rev) { // valid server version, stop sending the ResetInd MAC command deleteMacCommand(RADIOLIB_LW_MAC_RESET, &this->commandsUp); } return(false); } break; case(RADIOLIB_LW_MAC_LINK_CHECK): { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("LinkCheckAns: [user]"); // delete any existing response (does nothing if there is none) deleteMacCommand(RADIOLIB_LW_MAC_LINK_CHECK, &this->commandsDown); // insert response into MAC downlink queue pushMacCommand(cmd, &this->commandsDown); return(false); } break; case(RADIOLIB_LW_MAC_LINK_ADR): { int16_t state = RADIOLIB_ERR_UNKNOWN; // get the ADR configuration uint8_t drUp = (cmd->payload[0] & 0xF0) >> 4; uint8_t txSteps = cmd->payload[0] & 0x0F; bool isInternalTxDr = cmd->payload[3] >> 7; uint16_t chMask = LoRaWANNode::ntoh(&cmd->payload[1]); uint8_t chMaskCntl = (cmd->payload[3] & 0x70) >> 4; uint8_t nbTrans = cmd->payload[3] & 0x0F; RADIOLIB_DEBUG_PROTOCOL_PRINTLN("LinkADRReq: dataRate = %d, txSteps = %d, chMask = 0x%04x, chMaskCntl = %d, nbTrans = %d", drUp, txSteps, chMask, chMaskCntl, nbTrans); // try to apply the datarate configuration uint8_t drAck = 0; if(drUp == 0x0F) { // keep the same drAck = 1; } else if (this->band->dataRates[drUp] != RADIOLIB_LW_DATA_RATE_UNUSED) { // check if the module supports this data rate DataRate_t dr; state = findDataRate(drUp, &dr); if(state == RADIOLIB_ERR_NONE) { uint8_t drDown = getDownlinkDataRate(drUp, this->rx1DrOffset, this->band->rx1DataRateBase, this->currentChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK].drMin, this->currentChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK].drMax); this->dataRates[RADIOLIB_LW_CHANNEL_DIR_UPLINK] = drUp; this->dataRates[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK] = drDown; drAck = 1; } else { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("ADR failed to configure dataRate %d, code %d!", drUp, state); drUp = 0x0F; // set value to 'keep the same' } } // try to apply the power configuration uint8_t pwrAck = 0; if(txSteps == 0x0F) { pwrAck = 1; } else { int8_t power = this->txPowerMax - 2*txSteps; int8_t powerActual = 0; state = this->phyLayer->checkOutputPower(power, &powerActual); // only acknowledge if the radio is able to operate at or below the requested power level if(state == RADIOLIB_ERR_NONE || (state == RADIOLIB_ERR_INVALID_OUTPUT_POWER && powerActual < power)) { pwrAck = 1; this->txPowerSteps = txSteps; } else { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("ADR failed to configure Tx power %d, code %d!", power, state); txSteps = 0x0F; // set value to 'keep the same' } } uint8_t chMaskAck = 1; // only apply channel mask when the RFU bit is not set // (which is only set in internal MAC commands for changing Tx/Dr) if(!isInternalTxDr) { if(this->band->bandType == RADIOLIB_LW_BAND_DYNAMIC) { chMaskAck = (uint8_t)this->applyChannelMaskDyn(chMaskCntl, chMask); } else { // RADIOLIB_LW_BAND_FIXED if(cmd->repeat == 1) { // if this is the first ADR command in the queue, clear all saved channels // so we can apply the new channel mask RADIOLIB_DEBUG_PROTOCOL_PRINTLN("ADR mask: clearing channels"); for(size_t i = 0; i < RADIOLIB_LW_NUM_AVAILABLE_CHANNELS; i++) { this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i] = RADIOLIB_LW_CHANNEL_NONE; } // clear all previous channel masks memset(&this->bufferSession[RADIOLIB_LW_SESSION_UL_CHANNELS], 0, 16*8); } else { // if this is not the first ADR command, clear the ADR response that was in the queue (void)deleteMacCommand(RADIOLIB_LW_MAC_LINK_ADR, &this->commandsUp); } chMaskAck = (uint8_t)this->applyChannelMaskFix(chMaskCntl, chMask); } } if(nbTrans) { // if there is a value for NbTrans, set this value this->nbTrans = nbTrans; } // replace 'placeholder' or failed values with the current values for saving // per spec, all these configuration should only be set if all ACKs are set, otherwise retain previous state // but we don't bother and try to set each individual command if(drUp == 0x0F || !drAck) { cmd->payload[0] = (cmd->payload[0] & 0x0F) | (this->dataRates[RADIOLIB_LW_CHANNEL_DIR_UPLINK] << 4); } if(txSteps == 0x0F || !pwrAck) { cmd->payload[0] = (cmd->payload[0] & 0xF0) | this->txPowerSteps; } if(nbTrans == 0) { cmd->payload[3] = (cmd->payload[3] & 0xF0) | this->nbTrans; } if(this->band->bandType == RADIOLIB_LW_BAND_DYNAMIC) { // if RFU bit is set, this is just a change in Datarate or TxPower, so read ADR command and overwrite first byte if(isInternalTxDr) { memcpy(&(cmd->payload[1]), &this->bufferSession[RADIOLIB_LW_SESSION_LINK_ADR] + 1, 3); } // if there was no channel mask (all zeroes), we should never apply that channel mask, so set RFU bit again if(cmd->payload[1] == 0 && cmd->payload[2] == 0) { cmd->payload[3] |= (1 << 7); } // save to the single ADR MAC location memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_LINK_ADR], &(cmd->payload[0]), cmd->len); } else { // RADIOLIB_LW_BAND_FIXED // save Tx/Dr to the Link ADR position in the session buffer uint8_t bufTxDr[RADIOLIB_LW_MAX_MAC_COMMAND_LEN_DOWN] = { 0 }; bufTxDr[0] = cmd->payload[0]; bufTxDr[3] = 1 << 7; memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_LINK_ADR], bufTxDr, cmd->len); // if RFU bit is set, this is just a change in Datarate or TxPower, in which case we don't save the channel masks // if the RFU bit is not set, we must save this channel mask if(!isInternalTxDr) { // save the channel mask to the uplink channels position in session buffer, with Tx and DR set to 'same' cmd->payload[0] = 0xFF; memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_UL_CHANNELS] + (cmd->repeat - 1) * cmd->len, cmd->payload, cmd->len); RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Saving mask to ULChannels[%d]:", (cmd->repeat - 1) * cmd->len); RADIOLIB_DEBUG_PROTOCOL_HEXDUMP(&this->bufferSession[RADIOLIB_LW_SESSION_UL_CHANNELS] + (cmd->repeat - 1) * cmd->len, cmd->len); } } // send the reply cmd->len = 1; cmd->payload[0] = (pwrAck << 2) | (drAck << 1) | (chMaskAck << 0); cmd->repeat = 0; // discard any repeat value that may have been set RADIOLIB_DEBUG_PROTOCOL_PRINTLN("LinkADRAns: status = 0x%02x", cmd->payload[0]); return(true); } break; case(RADIOLIB_LW_MAC_DUTY_CYCLE): { uint8_t maxDutyCycle = cmd->payload[0] & 0x0F; RADIOLIB_DEBUG_PROTOCOL_PRINTLN("DutyCycleReq: max duty cycle = 1/2^%d", maxDutyCycle); if(maxDutyCycle == 0) { this->dutyCycle = this->band->dutyCycle; } else { this->dutyCycle = (RadioLibTime_t)60 * (RadioLibTime_t)60 * (RadioLibTime_t)1000 / (RadioLibTime_t)(1UL << maxDutyCycle); } memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_DUTY_CYCLE], cmd->payload, cmd->len); cmd->len = 0; return(true); } break; case(RADIOLIB_LW_MAC_RX_PARAM_SETUP): { // get the configuration this->rx1DrOffset = (cmd->payload[0] & 0x70) >> 4; uint8_t rx1OffsAck = 1; this->rx2.drMax = cmd->payload[0] & 0x0F; uint8_t rx2Ack = 1; uint32_t freqRaw = LoRaWANNode::ntoh(&cmd->payload[1], 3); this->rx2.freq = (float)freqRaw/10000.0; RADIOLIB_DEBUG_PROTOCOL_PRINTLN("RXParamSetupReq: rx1DrOffset = %d, rx2DataRate = %d, freq = %f", this->rx1DrOffset, this->rx2.drMax, this->rx2.freq); // apply the configuration uint8_t chanAck = 0; if(this->phyLayer->setFrequency(this->rx2.freq) == RADIOLIB_ERR_NONE) { chanAck = 1; this->phyLayer->setFrequency(this->currentChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK].freq); } memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_RX_PARAM_SETUP], cmd->payload, cmd->len); // TODO this should be sent repeatedly until the next downlink cmd->len = 1; cmd->payload[0] = (rx1OffsAck << 2) | (rx2Ack << 1) | (chanAck << 0); RADIOLIB_DEBUG_PROTOCOL_PRINTLN("RXParamSetupAns: status = 0x%02x", cmd->payload[0]); return(true); } break; case(RADIOLIB_LW_MAC_DEV_STATUS): { // set the uplink reply RADIOLIB_DEBUG_PROTOCOL_PRINTLN("DevStatusReq"); cmd->len = 2; cmd->payload[0] = this->battLevel; int8_t snr = this->phyLayer->getSNR(); cmd->payload[1] = snr & 0x3F; RADIOLIB_DEBUG_PROTOCOL_PRINTLN("DevStatusAns: status = 0x%02x%02x", cmd->payload[0], cmd->payload[1]); return(true); } break; case(RADIOLIB_LW_MAC_NEW_CHANNEL): { // get the configuration uint8_t chIndex = cmd->payload[0]; uint32_t freqRaw = LoRaWANNode::ntoh(&cmd->payload[1], 3); float freq = (float)freqRaw/10000.0; uint8_t maxDr = (cmd->payload[4] & 0xF0) >> 4; uint8_t minDr = cmd->payload[4] & 0x0F; uint8_t newChAck = 0; uint8_t freqAck = 0; this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][chIndex].enabled = true; this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][chIndex].idx = chIndex; this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][chIndex].freq = freq; this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][chIndex].drMin = minDr; this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][chIndex].drMax = maxDr; // downlink channel is identical to uplink channel this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][chIndex] = this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][chIndex]; newChAck = 1; // check if the frequency is possible if(this->phyLayer->setFrequency(this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][chIndex].freq) == RADIOLIB_ERR_NONE) { freqAck = 1; this->phyLayer->setFrequency(this->currentChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK].freq); } RADIOLIB_DEBUG_PROTOCOL_PRINTLN("NewChannelReq:"); RADIOLIB_DEBUG_PROTOCOL_PRINTLN("UL: %3d %d %7.3f (%d - %d) | DL: %3d %d %7.3f (%d - %d)", this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][chIndex].idx, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][chIndex].enabled, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][chIndex].freq, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][chIndex].drMin, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][chIndex].drMax, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][chIndex].idx, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][chIndex].enabled, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][chIndex].freq, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][chIndex].drMin, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][chIndex].drMax ); memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_UL_CHANNELS] + chIndex * cmd->len, cmd->payload, cmd->len); // send the reply cmd->len = 1; cmd->payload[0] = (newChAck << 1) | (freqAck << 0); RADIOLIB_DEBUG_PROTOCOL_PRINTLN("NewChannelAns: status = 0x%02x", cmd->payload[0]); return(true); } break; case(RADIOLIB_LW_MAC_DL_CHANNEL): { // get the configuration uint8_t chIndex = cmd->payload[0]; uint32_t freqRaw = LoRaWANNode::ntoh(&cmd->payload[1], 3); float freq = (float)freqRaw/10000.0; RADIOLIB_DEBUG_PROTOCOL_PRINTLN("DlChannelReq: index = %d, freq = %f MHz", chIndex, freq); uint8_t freqDlAck = 0; uint8_t freqUlAck = 0; // check if the frequency is possible if(this->phyLayer->setFrequency(freq) == RADIOLIB_ERR_NONE) { freqDlAck = 1; this->phyLayer->setFrequency(this->currentChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK].freq); } // update the downlink frequency for(int i = 0; i < RADIOLIB_LW_NUM_AVAILABLE_CHANNELS; i++) { if(this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][i].idx == chIndex) { this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][i].freq = freq; // check if the corresponding uplink frequency is actually set if(this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].freq > 0) { freqUlAck = 1; } } } memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_DL_CHANNELS] + chIndex * cmd->len, cmd->payload, cmd->len); // TODO send this repeatedly until a downlink is received cmd->len = 1; cmd->payload[0] = (freqUlAck << 1) | (freqDlAck << 0); RADIOLIB_DEBUG_PROTOCOL_PRINTLN("DlChannelAns: status = 0x%02x", cmd->payload[0]); return(true); } break; case(RADIOLIB_LW_MAC_RX_TIMING_SETUP): { // get the configuration uint8_t delay = cmd->payload[0] & 0x0F; RADIOLIB_DEBUG_PROTOCOL_PRINTLN("RXTimingSetupReq: delay = %d sec", delay); // apply the configuration if(delay == 0) { delay = 1; } this->rxDelays[0] = delay * 1000; this->rxDelays[1] = this->rxDelays[0] + 1000; memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_RX_TIMING_SETUP], cmd->payload, cmd->len); // send the reply cmd->len = 0; // TODO send this repeatedly until a downlink is received return(true); } break; case(RADIOLIB_LW_MAC_TX_PARAM_SETUP): { uint8_t dlDwell = (cmd->payload[0] & 0x20) >> 5; uint8_t ulDwell = (cmd->payload[0] & 0x10) >> 4; uint8_t maxEirpRaw = cmd->payload[0] & 0x0F; // who the f came up with this ... const uint8_t eirpEncoding[] = { 8, 10, 12, 13, 14, 16, 18, 20, 21, 24, 26, 27, 29, 30, 33, 36 }; this->txPowerMax = eirpEncoding[maxEirpRaw]; RADIOLIB_DEBUG_PROTOCOL_PRINTLN("TxParamSetupReq: dlDwell = %d, ulDwell = %d, maxEirp = %d dBm", dlDwell, ulDwell, eirpEncoding[maxEirpRaw]); this->dwellTimeEnabledUp = ulDwell ? true : false; this->dwellTimeUp = ulDwell ? RADIOLIB_LW_DWELL_TIME : 0; this->dwellTimeEnabledDn = dlDwell ? true : false; this->dwellTimeDn = dlDwell ? RADIOLIB_LW_DWELL_TIME : 0; memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_TX_PARAM_SETUP], cmd->payload, cmd->len); cmd->len = 0; return(true); } break; case(RADIOLIB_LW_MAC_REKEY): { // get the server version uint8_t srvVersion = cmd->payload[0]; RADIOLIB_DEBUG_PROTOCOL_PRINTLN("RekeyConf: server version = 1.%d", srvVersion); if((srvVersion > 0) && (srvVersion <= this->rev)) { // valid server version, stop sending the ReKey MAC command deleteMacCommand(RADIOLIB_LW_MAC_REKEY, &this->commandsUp); } return(false); } break; case(RADIOLIB_LW_MAC_ADR_PARAM_SETUP): { this->adrLimitExp = (cmd->payload[0] & 0xF0) >> 4; this->adrDelayExp = cmd->payload[0] & 0x0F; RADIOLIB_DEBUG_PROTOCOL_PRINTLN("ADRParamSetupReq: limitExp = %d, delayExp = %d", this->adrLimitExp, this->adrDelayExp); memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_ADR_PARAM_SETUP], cmd->payload, cmd->len); cmd->len = 0; return(true); } break; case(RADIOLIB_LW_MAC_DEVICE_TIME): { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("DeviceTimeAns: [user]"); // delete any existing response (does nothing if there is none) deleteMacCommand(RADIOLIB_LW_MAC_DEVICE_TIME, &this->commandsDown); // insert response into MAC downlink queue pushMacCommand(cmd, &this->commandsDown); return(false); } break; case(RADIOLIB_LW_MAC_FORCE_REJOIN): { // TODO implement this uint16_t rejoinReq = LoRaWANNode::ntoh(cmd->payload); uint8_t period = (rejoinReq & 0x3800) >> 11; uint8_t maxRetries = (rejoinReq & 0x0700) >> 8; uint8_t rejoinType = (rejoinReq & 0x0070) >> 4; uint8_t dr = rejoinReq & 0x000F; RADIOLIB_DEBUG_PROTOCOL_PRINTLN("ForceRejoinReq: period = %d, maxRetries = %d, rejoinType = %d, dr = %d", period, maxRetries, rejoinType, dr); (void)period; (void)maxRetries; (void)rejoinType; (void)dr; return(false); } break; case(RADIOLIB_LW_MAC_REJOIN_PARAM_SETUP): { // TODO implement this uint8_t maxTime = (cmd->payload[0] & 0xF0) >> 4; uint8_t maxCount = cmd->payload[0] & 0x0F; RADIOLIB_DEBUG_PROTOCOL_PRINTLN("RejoinParamSetupReq: maxTime = %d, maxCount = %d", maxTime, maxCount); memcpy(&this->bufferSession[RADIOLIB_LW_SESSION_REJOIN_PARAM_SETUP], cmd->payload, cmd->len); cmd->len = 0; cmd->payload[0] = (1 << 1) | 1; RADIOLIB_DEBUG_PROTOCOL_PRINTLN("RejoinParamSetupAns: status = 0x%02x", cmd->payload[0]); (void)maxTime; (void)maxCount; return(true); } break; } return(false); } bool LoRaWANNode::applyChannelMaskDyn(uint8_t chMaskCntl, uint16_t chMask) { for(size_t i = 0; i < RADIOLIB_LW_NUM_AVAILABLE_CHANNELS; i++) { if(chMaskCntl == 0) { // apply the mask by looking at each channel bit if(chMask & (1UL << i)) { // if it should be enabled but is not currently defined, stop immediately if(this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].idx == RADIOLIB_LW_CHANNEL_INDEX_NONE) { return(false); } this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].enabled = true; } else { this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].enabled = false; } } else if(chMaskCntl == 6) { // enable all defined channels if(this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].idx != RADIOLIB_LW_CHANNEL_INDEX_NONE) { this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].enabled = true; } } } for (int i = 0; i < RADIOLIB_LW_NUM_AVAILABLE_CHANNELS; i++) { if(this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].enabled) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("UL: %3d %d %7.3f (%d - %d) | DL: %3d %d %7.3f (%d - %d)", this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].idx, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].enabled, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].freq, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].drMin, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].drMax, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][i].idx, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][i].enabled, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][i].freq, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][i].drMin, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][i].drMax ); } } return(true); } bool LoRaWANNode::applyChannelMaskFix(uint8_t chMaskCntl, uint16_t chMask) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("mask[%d] = 0x%04x", chMaskCntl, chMask); // find out how many channels have already been configured uint8_t idx = 0; for(size_t i = 0; i < RADIOLIB_LW_NUM_AVAILABLE_CHANNELS; i++) { if(this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].freq > 0) { idx++; } } if((this->band->numTxSpans == 1 && chMaskCntl <= 5) || (this->band->numTxSpans == 2 && chMaskCntl <= 3)) { // select channels from first span LoRaWANChannel_t chnl; for(uint8_t i = 0; i < 16; i++) { uint16_t mask = 1 << i; if(mask & chMask) { uint8_t chNum = chMaskCntl * 16 + i; // 0 through 63 or 95 this->subBand = chNum / 8 + 1; // save configured subband in case we must reset the channels (1-based) chnl.enabled = true; chnl.idx = chNum; chnl.freq = this->band->txSpans[0].freqStart + chNum*this->band->txSpans[0].freqStep; chnl.drMin = this->band->txSpans[0].drMin; chnl.drMax = this->band->txSpans[0].drMax; this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][idx++] = chnl; } } } if(this->band->numTxSpans == 1 && chMaskCntl == 6) { // all channels on (but we revert to user-selected subband) this->setupChannelsFix(this->subBand); } if(this->band->numTxSpans == 2 && chMaskCntl == 4) { // select channels from second span LoRaWANChannel_t chnl; for(uint8_t i = 0; i < 8; i++) { uint16_t mask = 1 << i; if(mask & chMask) { uint8_t chNum = chMaskCntl * 16 + i; // 64 through 71 chnl.enabled = true; chnl.idx = chNum; chnl.freq = this->band->txSpans[1].freqStart + i*this->band->txSpans[1].freqStep; chnl.drMin = this->band->txSpans[1].drMin; chnl.drMax = this->band->txSpans[1].drMax; this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][idx++] = chnl; } } } if(this->band->numTxSpans == 2 && chMaskCntl == 5) { // a '1' enables a bank of 8 + 1 channels from 1st and 2nd span respectively LoRaWANChannel_t chnl; for(uint8_t i = 0; i < 8; i++) { uint16_t mask = 1 << i; if(mask & chMask) { // enable bank of 8 channels from first span for(uint8_t j = 0; j < 8; j++) { uint8_t chNum = i * 8 + j; chnl.enabled = true; chnl.idx = chNum; chnl.freq = this->band->txSpans[0].freqStart + chNum*this->band->txSpans[0].freqStep; chnl.drMin = this->band->txSpans[0].drMin; chnl.drMax = this->band->txSpans[0].drMax; this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][idx++] = chnl; } // enable single channel from second span uint8_t chNum = 64 + i; chnl.enabled = true; chnl.idx = chNum; chnl.freq = this->band->txSpans[1].freqStart + i*this->band->txSpans[1].freqStep; chnl.drMin = this->band->txSpans[1].drMin; chnl.drMax = this->band->txSpans[1].drMax; this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][idx++] = chnl; } } } if(this->band->numTxSpans == 2 && chMaskCntl == 6) { // all channels on (but we revert to selected subband) this->setupChannelsFix(this->subBand); // a '1' enables a single channel from second span LoRaWANChannel_t chnl; for(uint8_t i = 0; i < 8; i++) { uint16_t mask = 1 << i; if(mask & chMask) { // enable single channel from second span uint8_t chNum = 64 + i; chnl.enabled = true; chnl.idx = chNum; chnl.freq = this->band->txSpans[1].freqStart + i*this->band->txSpans[1].freqStep; chnl.drMin = this->band->txSpans[1].drMin; chnl.drMax = this->band->txSpans[1].drMax; this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][idx++] = chnl; } } } if(this->band->numTxSpans == 2 && chMaskCntl == 7) { // all channels off (clear all channels) LoRaWANChannel_t chnl = RADIOLIB_LW_CHANNEL_NONE; for(int i = 0; i < RADIOLIB_LW_NUM_AVAILABLE_CHANNELS; i++) { this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i] = chnl; // downlink channels are not defined so don't need to reset } idx = 0; // a '1' enables a single channel from second span for(uint8_t i = 0; i < 8; i++) { uint16_t mask = 1 << i; if(mask & chMask) { // enable single channel from second span uint8_t chNum = 64 + i; chnl.enabled = true; chnl.idx = chNum; chnl.freq = this->band->txSpans[1].freqStart + i*this->band->txSpans[1].freqStep; chnl.drMin = this->band->txSpans[1].drMin; chnl.drMax = this->band->txSpans[1].drMax; this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][idx++] = chnl; } } } for (int i = 0; i < RADIOLIB_LW_NUM_AVAILABLE_CHANNELS; i++) { if(this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].enabled) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("UL: %3d %d %7.3f (%d - %d) | DL: %3d %d %7.3f (%d - %d)", this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].idx, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].enabled, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].freq, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].drMin, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_UPLINK][i].drMax, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][i].idx, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][i].enabled, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][i].freq, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][i].drMin, this->availableChannels[RADIOLIB_LW_CHANNEL_DIR_DOWNLINK][i].drMax ); } } return(true); } uint8_t LoRaWANNode::getMacPayloadLength(uint8_t cid) { for (LoRaWANMacSpec_t entry : MacTable) { if (entry.cid == cid) { return entry.lenDn; } } // no idea about the length return 0; } int16_t LoRaWANNode::getMacLinkCheckAns(uint8_t* margin, uint8_t* gwCnt) { uint8_t payload[RADIOLIB_LW_MAX_MAC_COMMAND_LEN_DOWN] = { 0 }; int16_t state = deleteMacCommand(RADIOLIB_LW_LINK_CHECK_REQ, &this->commandsDown, payload); RADIOLIB_ASSERT(state); if(margin) { *margin = payload[0]; } if(gwCnt) { *gwCnt = payload[1]; } return(RADIOLIB_ERR_NONE); } int16_t LoRaWANNode::getMacDeviceTimeAns(uint32_t* gpsEpoch, uint8_t* fraction, bool returnUnix) { uint8_t payload[RADIOLIB_LW_MAX_MAC_COMMAND_LEN_DOWN] = { 0 }; int16_t state = deleteMacCommand(RADIOLIB_LW_MAC_DEVICE_TIME, &this->commandsDown, payload); RADIOLIB_ASSERT(state); if(gpsEpoch) { *gpsEpoch = LoRaWANNode::ntoh(&payload[0]); if(returnUnix) { uint32_t unixOffset = 315964800UL - 18UL; // 18 leap seconds since GPS epoch (Jan. 6th 1980) *gpsEpoch += unixOffset; } } if(fraction) { *fraction = payload[4]; } return(RADIOLIB_ERR_NONE); } uint64_t LoRaWANNode::getDevAddr() { return(this->devAddr); } RadioLibTime_t LoRaWANNode::getLastToA() { return(this->lastToA); } // The following function enables LMAC, a CSMA scheme for LoRa as specified // in the LoRa Alliance Technical Recommendation #13. // A user may enable CSMA to provide frames an additional layer of protection from interference. // https://resources.lora-alliance.org/technical-recommendations/tr013-1-0-0-csma void LoRaWANNode::performCSMA() { // Compute initial random back-off. // When BO is reduced to zero, the function returns and the frame is transmitted. uint32_t BO = this->phyLayer->random(1, this->backoffMax + 1); while (BO > 0) { // DIFS: Check channel for DIFS_slots bool channelFreeDuringDIFS = true; for (uint8_t i = 0; i < this->difsSlots; i++) { if (performCAD()) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Occupied channel during DIFS"); channelFreeDuringDIFS = false; // Channel is occupied during DIFS, hop to another. this->selectChannels(); break; } } // Start reducing BO counter if DIFS slot was free. if (channelFreeDuringDIFS) { // Continue decrementing BO with per each CAD reporting free channel. while (BO > 0) { if (performCAD()) { RADIOLIB_DEBUG_PROTOCOL_PRINTLN("Occupied channel during BO"); // Channel is busy during CAD, hop to another and return to DIFS state again. this->selectChannels(); break; // Exit loop. Go back to DIFS state. } BO--; // Decrement BO by one if channel is free } } } } bool LoRaWANNode::performCAD() { int16_t state = this->phyLayer->scanChannel(); if ((state == RADIOLIB_PREAMBLE_DETECTED) || (state == RADIOLIB_LORA_DETECTED)) { return true; // Channel is busy } return false; // Channel is free } void LoRaWANNode::processAES(uint8_t* in, size_t len, uint8_t* key, uint8_t* out, uint32_t fCnt, uint8_t dir, uint8_t ctrId, bool counter) { // figure out how many encryption blocks are there size_t numBlocks = len/RADIOLIB_AES128_BLOCK_SIZE; if(len % RADIOLIB_AES128_BLOCK_SIZE) { numBlocks++; } // generate the encryption blocks uint8_t encBuffer[RADIOLIB_AES128_BLOCK_SIZE] = { 0 }; uint8_t encBlock[RADIOLIB_AES128_BLOCK_SIZE] = { 0 }; encBlock[RADIOLIB_LW_BLOCK_MAGIC_POS] = RADIOLIB_LW_ENC_BLOCK_MAGIC; encBlock[RADIOLIB_LW_ENC_BLOCK_COUNTER_ID_POS] = ctrId; encBlock[RADIOLIB_LW_BLOCK_DIR_POS] = dir; LoRaWANNode::hton(&encBlock[RADIOLIB_LW_BLOCK_DEV_ADDR_POS], this->devAddr); LoRaWANNode::hton(&encBlock[RADIOLIB_LW_BLOCK_FCNT_POS], fCnt); // now encrypt the input // on downlink frames, this has a decryption effect because server actually "decrypts" the plaintext size_t remLen = len; for(size_t i = 0; i < numBlocks; i++) { if(counter) { encBlock[RADIOLIB_LW_ENC_BLOCK_COUNTER_POS] = i + 1; } // encrypt the buffer RadioLibAES128Instance.init(key); RadioLibAES128Instance.encryptECB(encBlock, RADIOLIB_AES128_BLOCK_SIZE, encBuffer); // now xor the buffer with the input size_t xorLen = remLen; if(xorLen > RADIOLIB_AES128_BLOCK_SIZE) { xorLen = RADIOLIB_AES128_BLOCK_SIZE; } for(uint8_t j = 0; j < xorLen; j++) { out[i*RADIOLIB_AES128_BLOCK_SIZE + j] = in[i*RADIOLIB_AES128_BLOCK_SIZE + j] ^ encBuffer[j]; } remLen -= xorLen; } } uint16_t LoRaWANNode::checkSum16(uint8_t *key, uint16_t keyLen) { uint16_t checkSum = 0; for(uint16_t i = 0; i < keyLen; i += 2) { checkSum ^= ((uint16_t)key[i] << 8) | key[i + 1]; } if(keyLen % 2 == 1) { uint16_t val = ((uint16_t)key[keyLen - 1] << 8); checkSum ^= val; } return(checkSum); } template T LoRaWANNode::ntoh(uint8_t* buff, size_t size) { uint8_t* buffPtr = buff; size_t targetSize = sizeof(T); if(size != 0) { targetSize = size; } T res = 0; for(size_t i = 0; i < targetSize; i++) { res |= (uint32_t)(*(buffPtr++)) << 8*i; } return(res); } template void LoRaWANNode::hton(uint8_t* buff, T val, size_t size) { uint8_t* buffPtr = buff; size_t targetSize = sizeof(T); if(size != 0) { targetSize = size; } for(size_t i = 0; i < targetSize; i++) { *(buffPtr++) = val >> 8*i; } } #endif