#include "nRF24.h" #if !defined(RADIOLIB_EXCLUDE_NRF24) nRF24::nRF24(Module* mod) : PhysicalLayer(NRF24_FREQUENCY_STEP_SIZE, NRF24_MAX_PACKET_LENGTH) { _mod = mod; } int16_t nRF24::begin(int16_t freq, int16_t dataRate, int8_t power, uint8_t addrWidth) { // set module properties _mod->SPIreadCommand = NRF24_CMD_READ; _mod->SPIwriteCommand = NRF24_CMD_WRITE; _mod->init(RADIOLIB_USE_SPI); // set pin mode on RST (connected to nRF24 CE pin) Module::pinMode(_mod->getRst(), OUTPUT); Module::digitalWrite(_mod->getRst(), LOW); // wait for minimum power-on reset duration Module::delay(100); // check SPI connection int16_t val = _mod->SPIgetRegValue(NRF24_REG_SETUP_AW); if(!((val >= 0) && (val <= 3))) { RADIOLIB_DEBUG_PRINTLN(F("No nRF24 found!")); _mod->term(RADIOLIB_USE_SPI); return(ERR_CHIP_NOT_FOUND); } // configure settings inaccessible by public API int16_t state = config(); RADIOLIB_ASSERT(state); // set mode to standby state = standby(); RADIOLIB_ASSERT(state); // set frequency state = setFrequency(freq); RADIOLIB_ASSERT(state); // set data rate state = setDataRate(dataRate); RADIOLIB_ASSERT(state); // set output power state = setOutputPower(power); RADIOLIB_ASSERT(state); // set address width state = setAddressWidth(addrWidth); RADIOLIB_ASSERT(state); // set CRC state = setCrcFiltering(true); RADIOLIB_ASSERT(state); // set auto-ACK on all pipes state = setAutoAck(true); RADIOLIB_ASSERT(state); return(state); } int16_t nRF24::sleep() { return(_mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_POWER_DOWN, 1, 1)); } int16_t nRF24::standby() { // make sure carrier output is disabled _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_CONT_WAVE_OFF, 7, 7); _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_PLL_LOCK_OFF, 4, 4); Module::digitalWrite(_mod->getRst(), LOW); // use standby-1 mode return(_mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_POWER_UP, 1, 1)); } int16_t nRF24::transmit(uint8_t* data, size_t len, uint8_t addr) { // start transmission int16_t state = startTransmit(data, len, addr); RADIOLIB_ASSERT(state); // wait until transmission is finished uint32_t start = Module::micros(); while(Module::digitalRead(_mod->getIrq())) { Module::yield(); // check maximum number of retransmits if(getStatus(NRF24_MAX_RT)) { standby(); clearIRQ(); return(ERR_ACK_NOT_RECEIVED); } // check timeout: 15 retries * 4ms (max Tx time as per datasheet) if(Module::micros() - start >= 60000) { standby(); clearIRQ(); return(ERR_TX_TIMEOUT); } } // clear interrupts clearIRQ(); return(state); } int16_t nRF24::receive(uint8_t* data, size_t len) { // start reception int16_t state = startReceive(); RADIOLIB_ASSERT(state); // wait for Rx_DataReady or timeout uint32_t start = Module::micros(); while(Module::digitalRead(_mod->getIrq())) { Module::yield(); // check timeout: 15 retries * 4ms (max Tx time as per datasheet) if(Module::micros() - start >= 60000) { standby(); clearIRQ(); return(ERR_RX_TIMEOUT); } } // read the received data return(readData(data, len)); } int16_t nRF24::transmitDirect(uint32_t frf) { // set raw frequency value if(frf != 0) { uint8_t freqRaw = frf - 2400; _mod->SPIwriteRegister(NRF24_REG_RF_CH, freqRaw & 0b01111111); } // output carrier int16_t state = _mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_PTX, 0, 0); state |= _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_CONT_WAVE_ON, 7, 7); state |= _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_PLL_LOCK_ON, 4, 4); Module::digitalWrite(_mod->getRst(), HIGH); return(state); } int16_t nRF24::receiveDirect() { // nRF24 is unable to directly output demodulated data // this method is implemented only for PhysicalLayer compatibility return(ERR_NONE); } void nRF24::setIrqAction(void (*func)(void)) { Module::attachInterrupt(RADIOLIB_DIGITAL_PIN_TO_INTERRUPT(_mod->getIrq()), func, FALLING); } int16_t nRF24::startTransmit(uint8_t* data, size_t len, uint8_t addr) { // suppress unused variable warning (void)addr; // check packet length if(len > NRF24_MAX_PACKET_LENGTH) { return(ERR_PACKET_TOO_LONG); } // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // enable primary Tx mode state = _mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_PTX, 0, 0); // clear interrupts clearIRQ(); // enable Tx_DataSent interrupt state |= _mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_MASK_TX_DS_IRQ_ON, 5, 5); RADIOLIB_ASSERT(state); // flush Tx FIFO SPItransfer(NRF24_CMD_FLUSH_TX); // fill Tx FIFO uint8_t buff[32]; memset(buff, 0x00, 32); memcpy(buff, data, len); SPIwriteTxPayload(data, len); // CE high to start transmitting Module::digitalWrite(_mod->getRst(), HIGH); Module::delay(1); Module::digitalWrite(_mod->getRst(), LOW); return(state); } int16_t nRF24::startReceive() { // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // enable primary Rx mode state = _mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_PRX, 0, 0); RADIOLIB_ASSERT(state); // enable Rx_DataReady interrupt clearIRQ(); state = _mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_MASK_RX_DR_IRQ_ON, 6, 6); RADIOLIB_ASSERT(state); // flush Rx FIFO SPItransfer(NRF24_CMD_FLUSH_RX); // CE high to start receiving Module::digitalWrite(_mod->getRst(), HIGH); // wait to enter Rx state Module::delay(1); return(state); } int16_t nRF24::readData(uint8_t* data, size_t len) { // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // get packet length size_t length = len; if(len == NRF24_MAX_PACKET_LENGTH) { length = getPacketLength(); } // read packet data SPIreadRxPayload(data, length); // clear interrupt clearIRQ(); return(ERR_NONE); } int16_t nRF24::setFrequency(int16_t freq) { RADIOLIB_CHECK_RANGE(freq, 2400, 2525, ERR_INVALID_FREQUENCY); // set frequency uint8_t freqRaw = freq - 2400; return(_mod->SPIsetRegValue(NRF24_REG_RF_CH, freqRaw, 6, 0)); } int16_t nRF24::setDataRate(int16_t dataRate) { // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // set data rate if(dataRate == 250) { state = _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_DR_250_KBPS, 5, 5); state |= _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_DR_250_KBPS, 3, 3); } else if(dataRate == 1000) { state = _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_DR_1_MBPS, 5, 5); state |= _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_DR_1_MBPS, 3, 3); } else if(dataRate == 2000) { state = _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_DR_2_MBPS, 5, 5); state |= _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_DR_2_MBPS, 3, 3); } else { return(ERR_INVALID_DATA_RATE); } return(state); } int16_t nRF24::setOutputPower(int8_t power) { // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // check allowed values uint8_t powerRaw = 0; switch(power) { case -18: powerRaw = NRF24_RF_PWR_18_DBM; break; case -12: powerRaw = NRF24_RF_PWR_12_DBM; break; case -6: powerRaw = NRF24_RF_PWR_6_DBM; break; case 0: powerRaw = NRF24_RF_PWR_0_DBM; break; default: return(ERR_INVALID_OUTPUT_POWER); } // write new register value state = _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, powerRaw, 2, 1); return(state); } int16_t nRF24::setAddressWidth(uint8_t addrWidth) { // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // set address width switch(addrWidth) { case 2: // Even if marked as 'Illegal' on the datasheet this will work: // http://travisgoodspeed.blogspot.com/2011/02/promiscuity-is-nrf24l01s-duty.html state = _mod->SPIsetRegValue(NRF24_REG_SETUP_AW, NRF24_ADDRESS_2_BYTES, 1, 0); break; case 3: state = _mod->SPIsetRegValue(NRF24_REG_SETUP_AW, NRF24_ADDRESS_3_BYTES, 1, 0); break; case 4: state = _mod->SPIsetRegValue(NRF24_REG_SETUP_AW, NRF24_ADDRESS_4_BYTES, 1, 0); break; case 5: state = _mod->SPIsetRegValue(NRF24_REG_SETUP_AW, NRF24_ADDRESS_5_BYTES, 1, 0); break; default: return(ERR_INVALID_ADDRESS_WIDTH); } // save address width _addrWidth = addrWidth; return(state); } int16_t nRF24::setTransmitPipe(uint8_t* addr) { // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // set transmit address _mod->SPIwriteRegisterBurst(NRF24_REG_TX_ADDR, addr, _addrWidth); // set Rx pipe 0 address (for ACK) _mod->SPIwriteRegisterBurst(NRF24_REG_RX_ADDR_P0, addr, _addrWidth); state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P0_ON, 0, 0); return(state); } int16_t nRF24::setReceivePipe(uint8_t pipeNum, uint8_t* addr) { // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // write full pipe 0 - 1 address and enable the pipe switch(pipeNum) { case 0: _mod->SPIwriteRegisterBurst(NRF24_REG_RX_ADDR_P0, addr, _addrWidth); state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P0_ON, 0, 0); break; case 1: _mod->SPIwriteRegisterBurst(NRF24_REG_RX_ADDR_P1, addr, _addrWidth); state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P1_ON, 1, 1); break; default: return(ERR_INVALID_PIPE_NUMBER); } return(state); } int16_t nRF24::setReceivePipe(uint8_t pipeNum, uint8_t addrByte) { // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); // write unique pipe 2 - 5 address and enable the pipe switch(pipeNum) { case 2: state = _mod->SPIsetRegValue(NRF24_REG_RX_ADDR_P2, addrByte); state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P2_ON, 2, 2); break; case 3: state = _mod->SPIsetRegValue(NRF24_REG_RX_ADDR_P3, addrByte); state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P3_ON, 3, 3); break; case 4: state = _mod->SPIsetRegValue(NRF24_REG_RX_ADDR_P4, addrByte); state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P4_ON, 4, 4); break; case 5: state = _mod->SPIsetRegValue(NRF24_REG_RX_ADDR_P5, addrByte); state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P5_ON, 5, 5); break; default: return(ERR_INVALID_PIPE_NUMBER); } return(state); } int16_t nRF24::disablePipe(uint8_t pipeNum) { // set mode to standby int16_t state = standby(); RADIOLIB_ASSERT(state); switch(pipeNum) { case 0: state = _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P0_OFF, 0, 0); break; case 1: state = _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P1_OFF, 1, 1); break; case 2: state = _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P2_OFF, 2, 2); break; case 3: state = _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P3_OFF, 3, 3); break; case 4: state = _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P4_OFF, 4, 4); break; case 5: state = _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P5_OFF, 5, 5); break; default: return(ERR_INVALID_PIPE_NUMBER); } return(state); } int16_t nRF24::getStatus(uint8_t mask) { return(_mod->SPIgetRegValue(NRF24_REG_STATUS) & mask); } bool nRF24::isCarrierDetected() { return(_mod->SPIgetRegValue(NRF24_REG_RPD, 0, 0) == 1); } int16_t nRF24::setFrequencyDeviation(float freqDev) { // nRF24 is unable to set frequency deviation // this method is implemented only for PhysicalLayer compatibility (void)freqDev; return(ERR_NONE); } size_t nRF24::getPacketLength(bool update) { (void)update; uint8_t length = 0; SPItransfer(NRF24_CMD_READ_RX_PAYLOAD_WIDTH, false, NULL, &length, 1); return((size_t)length); } int16_t nRF24::setCrcFiltering(bool crcOn) { // Auto Ack needs to be disabled in order to disable CRC. if (!crcOn) { int16_t status = setAutoAck(false); RADIOLIB_ASSERT(status) } // Disable CRC return _mod->SPIsetRegValue(NRF24_REG_CONFIG, crcOn ? NRF24_CRC_ON : NRF24_CRC_OFF, 3, 3); } int16_t nRF24::setAutoAck(bool autoAckOn){ return _mod->SPIsetRegValue(NRF24_REG_EN_AA, autoAckOn ? NRF24_AA_ALL_ON : NRF24_AA_ALL_OFF, 5, 0); } int16_t nRF24::setAutoAck(uint8_t pipeNum, bool autoAckOn){ switch(pipeNum) { case 0: return _mod->SPIsetRegValue(NRF24_REG_EN_AA, autoAckOn ? NRF24_AA_P0_ON : NRF24_AA_P0_OFF, 0, 0); break; case 1: return _mod->SPIsetRegValue(NRF24_REG_EN_AA, autoAckOn ? NRF24_AA_P1_ON : NRF24_AA_P1_OFF, 1, 1); break; case 2: return _mod->SPIsetRegValue(NRF24_REG_EN_AA, autoAckOn ? NRF24_AA_P2_ON : NRF24_AA_P2_OFF, 2, 2); break; case 3: return _mod->SPIsetRegValue(NRF24_REG_EN_AA, autoAckOn ? NRF24_AA_P3_ON : NRF24_AA_P3_OFF, 3, 3); break; case 4: return _mod->SPIsetRegValue(NRF24_REG_EN_AA, autoAckOn ? NRF24_AA_P4_ON : NRF24_AA_P4_OFF, 4, 4); break; case 5: return _mod->SPIsetRegValue(NRF24_REG_EN_AA, autoAckOn ? NRF24_AA_P5_ON : NRF24_AA_P5_OFF, 5, 5); break; default: return (ERR_INVALID_PIPE_NUMBER); } } int16_t nRF24::setDataShaping(uint8_t sh) { // nRF24 is unable to set data shaping // this method is implemented only for PhysicalLayer compatibility (void)sh; return(ERR_NONE); } int16_t nRF24::setEncoding(uint8_t encoding) { // nRF24 is unable to set encoding // this method is implemented only for PhysicalLayer compatibility (void)encoding; return(ERR_NONE); } void nRF24::clearIRQ() { // clear status bits _mod->SPIsetRegValue(NRF24_REG_STATUS, NRF24_RX_DR | NRF24_TX_DS | NRF24_MAX_RT, 6, 4); // disable interrupts _mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_MASK_RX_DR_IRQ_OFF | NRF24_MASK_TX_DS_IRQ_OFF | NRF24_MASK_MAX_RT_IRQ_OFF, 6, 4); } int16_t nRF24::config() { // enable 16-bit CRC int16_t state = _mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_CRC_ON | NRF24_CRC_16, 3, 2); RADIOLIB_ASSERT(state); // set 15 retries and delay 1500 (5*250) us _mod->SPIsetRegValue(NRF24_REG_SETUP_RETR, (5 << 4) | 5); // set features: dynamic payload on, payload with ACK packets off, dynamic ACK off state = _mod->SPIsetRegValue(NRF24_REG_FEATURE, NRF24_DPL_ON | NRF24_ACK_PAY_OFF | NRF24_DYN_ACK_OFF, 2, 0); RADIOLIB_ASSERT(state); // enable dynamic payloads state = _mod->SPIsetRegValue(NRF24_REG_DYNPD, NRF24_DPL_ALL_ON, 5, 0); RADIOLIB_ASSERT(state); // reset IRQ clearIRQ(); // clear status _mod->SPIsetRegValue(NRF24_REG_STATUS, NRF24_RX_DR | NRF24_TX_DS | NRF24_MAX_RT, 6, 4); // flush FIFOs SPItransfer(NRF24_CMD_FLUSH_TX); SPItransfer(NRF24_CMD_FLUSH_RX); // power up _mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_POWER_UP, 1, 1); Module::delay(5); return(state); } void nRF24::SPIreadRxPayload(uint8_t* data, uint8_t numBytes) { SPItransfer(NRF24_CMD_READ_RX_PAYLOAD, false, NULL, data, numBytes); } void nRF24::SPIwriteTxPayload(uint8_t* data, uint8_t numBytes) { SPItransfer(NRF24_CMD_WRITE_TX_PAYLOAD, true, data, NULL, numBytes); } void nRF24::SPItransfer(uint8_t cmd, bool write, uint8_t* dataOut, uint8_t* dataIn, uint8_t numBytes) { // get pointer to used SPI interface and the settings SPIClass* spi = _mod->getSpi(); SPISettings spiSettings = _mod->getSpiSettings(); // start transfer Module::digitalWrite(_mod->getCs(), LOW); spi->beginTransaction(spiSettings); // send command spi->transfer(cmd); // send data if(write) { for(uint8_t i = 0; i < numBytes; i++) { spi->transfer(dataOut[i]); } } else { for(uint8_t i = 0; i < numBytes; i++) { dataIn[i] = spi->transfer(0x00); } } // stop transfer spi->endTransaction(); Module::digitalWrite(_mod->getCs(), HIGH); } #endif