[CI] Unit test (#1373)

* [CI] Add basic unit testing

* [CI] Add gitignore

* [CI] Install libfmt

---------

Co-authored-by: jgromes <jan.gromes>
This commit is contained in:
Jan Gromeš 2025-01-05 17:23:13 +01:00 committed by GitHub
parent a63ca70558
commit cbb8d419d1
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 486 additions and 0 deletions

27
.github/workflows/unit-test.yml vendored Normal file
View file

@ -0,0 +1,27 @@
name: "Unit test"
on:
push:
branches: [master]
pull_request:
branches: [master]
workflow_dispatch:
jobs:
unit-test:
name: Build and run unit test
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install dependencies
run: |
sudo apt-get update
sudo apt-get install -y libboost-all-dev libfmt-dev
- name: Run unit test
run: |
cd extras/test/unit
./test.sh

1
extras/test/unit/.gitignore vendored Normal file
View file

@ -0,0 +1 @@
build/

View file

@ -0,0 +1,29 @@
cmake_minimum_required(VERSION 3.13)
project(radiolib-unittest)
# add RadioLib sources
add_subdirectory("${CMAKE_CURRENT_SOURCE_DIR}/../../../../RadioLib" "${CMAKE_CURRENT_BINARY_DIR}/RadioLib")
# add test sources
file(GLOB_RECURSE TEST_SOURCES
"tests/main.cpp"
"tests/TestModule.cpp"
)
# create the executable
add_executable(${PROJECT_NAME} ${TEST_SOURCES})
# include directories
target_include_directories(${PROJECT_NAME} PUBLIC include)
# link RadioLib
target_link_libraries(${PROJECT_NAME} RadioLib fmt)
# set target properties and options
set_property(TARGET ${PROJECT_NAME} PROPERTY CXX_STANDARD 20)
target_compile_options(${PROJECT_NAME} PRIVATE -Wall -Wextra)
# set RadioLib debug
#target_compile_definitions(RadioLib PUBLIC RADIOLIB_DEBUG_BASIC RADIOLIB_DEBUG_SPI)
#target_compile_definitions(RadioLib PUBLIC RADIOLIB_DEBUG_PORT=stdout)

View file

@ -0,0 +1,71 @@
#ifndef HARDWARE_EMULATION_HPP
#define HARDWARE_EMULATION_HPP
#include <stdint.h>
// value that is returned by the emualted radio class when performing SPI transfer to it
#define EMULATED_RADIO_SPI_RETURN (0xFF)
// pin indexes
#define EMULATED_RADIO_NSS_PIN (1)
#define EMULATED_RADIO_IRQ_PIN (2)
#define EMULATED_RADIO_RST_PIN (3)
#define EMULATED_RADIO_GPIO_PIN (4)
enum PinFunction_t {
PIN_UNASSIGNED = 0,
PIN_CS,
PIN_IRQ,
PIN_RST,
PIN_GPIO,
};
// structure for emulating GPIO pins
struct EmulatedPin_t {
uint32_t mode;
uint32_t value;
bool event;
PinFunction_t func;
};
// structure for emulating SPI registers
struct EmulatedRegister_t {
uint8_t value;
uint8_t readOnlyBitFlags;
bool bufferAccess;
};
// base class for emulated radio modules (SX126x etc.)
class EmulatedRadio {
public:
void connect(EmulatedPin_t* csPin, EmulatedPin_t* irqPin, EmulatedPin_t* rstPin, EmulatedPin_t* gpioPin) {
this->cs = csPin;
this->cs->func = PIN_CS;
this->irq = irqPin;
this->irq->func = PIN_IRQ;
this->rst = rstPin;
this->rst->func = PIN_RST;
this->gpio = gpioPin;
this->gpio->func = PIN_GPIO;
}
virtual uint8_t HandleSPI(uint8_t b) {
(void)b;
// handle the SPI input and generate output here
return(EMULATED_RADIO_SPI_RETURN);
}
virtual void HandleGPIO() {
// handle discrete GPIO signals here (e.g. reset state machine on NSS falling edge)
}
protected:
// pointers to emulated GPIO pins
// this is done via pointers so that the same GPIO entity is shared, like with a real hardware
EmulatedPin_t* cs;
EmulatedPin_t* irq;
EmulatedPin_t* rst;
EmulatedPin_t* gpio;
};
#endif

View file

@ -0,0 +1,237 @@
#ifndef TEST_HAL_HPP
#define TEST_HAL_HPP
#include <chrono>
#include <thread>
#include <fmt/format.h>
#include <RadioLib.h>
#include <boost/log/trivial.hpp>
#include <boost/format.hpp>
#if defined(TEST_HAL_LOG)
#define HAL_LOG(...) BOOST_TEST_MESSAGE(__VA_ARGS__)
#else
#define HAL_LOG(...) {}
#endif
#include "HardwareEmulation.hpp"
#define TEST_HAL_INPUT (0)
#define TEST_HAL_OUTPUT (1)
#define TEST_HAL_LOW (0)
#define TEST_HAL_HIGH (1)
#define TEST_HAL_RISING (0)
#define TEST_HAL_FALLING (1)
// number of emulated GPIO pins
#define TEST_HAL_NUM_GPIO_PINS (32)
#define TEST_HAL_SPI_LOG_LENGTH (512)
class TestHal : public RadioLibHal {
public:
TestHal() : RadioLibHal(TEST_HAL_INPUT, TEST_HAL_OUTPUT, TEST_HAL_LOW, TEST_HAL_HIGH, TEST_HAL_RISING, TEST_HAL_FALLING) { }
void init() override {
HAL_LOG("TestHal::init()");
// save program start timestamp
start = std::chrono::high_resolution_clock::now();
// init emulated GPIO
for(int i = 0; i < TEST_HAL_NUM_GPIO_PINS; i++) {
this->gpio[i].mode = 0;
this->gpio[i].value = 0;
this->gpio[i].event = false;
this->gpio[i].func = PIN_UNASSIGNED;
}
}
void term() override {
HAL_LOG("TestHal::term()");
}
void pinMode(uint32_t pin, uint32_t mode) override {
HAL_LOG("TestHal::pinMode(pin=" << pin << ", mode=" << mode << " [" << ((mode == TEST_HAL_INPUT) ? "INPUT" : "OUTPUT") << "])");
// check the range
BOOST_ASSERT_MSG(pin < TEST_HAL_NUM_GPIO_PINS, "Pin number out of range");
// check known modes
BOOST_ASSERT_MSG(((mode == TEST_HAL_INPUT) || (mode == TEST_HAL_OUTPUT)), "Invalid pin mode");
// set mode
this->gpio[pin].mode = mode;
}
void digitalWrite(uint32_t pin, uint32_t value) override {
HAL_LOG("TestHal::digitalWrite(pin=" << pin << ", value=" << value << " [" << ((value == TEST_HAL_LOW) ? "LOW" : "HIGH") << "])");
// check the range
BOOST_ASSERT_MSG(pin < TEST_HAL_NUM_GPIO_PINS, "Pin number out of range");
// check it is output
BOOST_ASSERT_MSG(this->gpio[pin].mode == TEST_HAL_OUTPUT, "GPIO is not output!");
// check known values
BOOST_ASSERT_MSG(((value == TEST_HAL_LOW) || (value == TEST_HAL_HIGH)), "Invalid output value");
// set value
this->gpio[pin].value = value;
this->gpio[pin].event = true;
if(radio) {
this->radio->HandleGPIO();
}
this->gpio[pin].event = false;
}
uint32_t digitalRead(uint32_t pin) override {
HAL_LOG("TestHal::digitalRead(pin=" << pin << ")");
// check the range
BOOST_ASSERT_MSG(pin < TEST_HAL_NUM_GPIO_PINS, "Pin number out of range");
// check it is input
BOOST_ASSERT_MSG(this->gpio[pin].mode == TEST_HAL_INPUT, "GPIO is not input");
// read the value
uint32_t value = this->gpio[pin].value;
HAL_LOG("TestHal::digitalRead(pin=" << pin << ")=" << value << " [" << ((value == TEST_HAL_LOW) ? "LOW" : "HIGH") << "]");
return(value);
}
void attachInterrupt(uint32_t interruptNum, void (*interruptCb)(void), uint32_t mode) override {
HAL_LOG("TestHal::attachInterrupt(interruptNum=" << interruptNum << ", interruptCb=" << interruptCb << ", mode=" << mode << ")");
}
void detachInterrupt(uint32_t interruptNum) override {
HAL_LOG("TestHal::detachInterrupt(interruptNum=" << interruptNum << ")");
}
void delay(unsigned long ms) override {
HAL_LOG("TestHal::delay(ms=" << ms << ")");
const auto start = std::chrono::high_resolution_clock::now();
// sleep_for is sufficient for ms-precision sleep
std::this_thread::sleep_for(std::chrono::duration<unsigned long, std::milli>(ms));
// measure and print
const auto end = std::chrono::high_resolution_clock::now();
const std::chrono::duration<double, std::milli> elapsed = end - start;
HAL_LOG("TestHal::delay(ms=" << ms << ")=" << elapsed.count() << "ms");
}
void delayMicroseconds(unsigned long us) override {
HAL_LOG("TestHal::delayMicroseconds(us=" << us << ")");
const auto start = std::chrono::high_resolution_clock::now();
// busy wait is needed for microseconds precision
const auto len = std::chrono::microseconds(us);
while(std::chrono::high_resolution_clock::now() - start < len);
// measure and print
const auto end = std::chrono::high_resolution_clock::now();
const std::chrono::duration<double, std::micro> elapsed = end - start;
HAL_LOG("TestHal::delayMicroseconds(us=" << us << ")=" << elapsed.count() << "us");
}
void yield() override {
HAL_LOG("TestHal::yield()");
}
unsigned long millis() override {
HAL_LOG("TestHal::millis()");
std::chrono::time_point now = std::chrono::high_resolution_clock::now();
auto res = std::chrono::duration_cast<std::chrono::milliseconds>(now - this->start);
HAL_LOG("TestHal::millis()=" << res.count());
return(res.count());
}
unsigned long micros() override {
HAL_LOG("TestHal::micros()");
std::chrono::time_point now = std::chrono::high_resolution_clock::now();
auto res = std::chrono::duration_cast<std::chrono::microseconds>(now - this->start);
HAL_LOG("TestHal::micros()=" << res.count());
return(res.count());
}
long pulseIn(uint32_t pin, uint32_t state, unsigned long timeout) override {
HAL_LOG("TestHal::pulseIn(pin=" << pin << ", state=" << state << ", timeout=" << timeout << ")");
return(0);
}
void spiBegin() {
HAL_LOG("TestHal::spiBegin()");
}
void spiBeginTransaction() {
HAL_LOG("TestHal::spiBeginTransaction()");
// wipe history log
memset(this->spiLog, 0x00, TEST_HAL_SPI_LOG_LENGTH);
this->spiLogPtr = this->spiLog;
}
void spiTransfer(uint8_t* out, size_t len, uint8_t* in) {
HAL_LOG("TestHal::spiTransfer(len=" << len << ")");
for(size_t i = 0; i < len; i++) {
// append to log
(*this->spiLogPtr++) = out[i];
// process the SPI byte
in[i] = this->radio->HandleSPI(out[i]);
// outpu debug
HAL_LOG(fmt::format("out={:#02x}, in={:#02x}", out[i], in[i]));
}
}
void spiEndTransaction() {
HAL_LOG("TestHal::spiEndTransaction()");
}
void spiEnd() {
HAL_LOG("TestHal::spiEnd()");
}
void tone(uint32_t pin, unsigned int frequency, unsigned long duration = 0) {
HAL_LOG("TestHal::tone(pin=" << pin << ", frequency=" << frequency << ", duration=" << duration << ")");
}
void noTone(uint32_t pin) {
HAL_LOG("TestHal::noTone(pin=" << pin << ")");
}
// method to compare buffer to the internal SPI log, for verifying SPI transactions
int spiLogMemcmp(const void* in, size_t n) {
return(memcmp(this->spiLog, in, n));
}
// method that "connects" the emualted radio hardware to this HAL
void connectRadio(EmulatedRadio* r) {
this->radio = r;
this->radio->connect(&this->gpio[EMULATED_RADIO_NSS_PIN],
&this->gpio[EMULATED_RADIO_IRQ_PIN],
&this->gpio[EMULATED_RADIO_RST_PIN],
&this->gpio[EMULATED_RADIO_GPIO_PIN]);
}
private:
// array of emulated GPIO pins
EmulatedPin_t gpio[TEST_HAL_NUM_GPIO_PINS];
// start time point
std::chrono::time_point<std::chrono::high_resolution_clock> start;
// emulated radio hardware
EmulatedRadio* radio;
// SPI history log
uint8_t spiLog[TEST_HAL_SPI_LOG_LENGTH];
uint8_t* spiLogPtr;
};
#endif

13
extras/test/unit/test.sh Executable file
View file

@ -0,0 +1,13 @@
#!/bin/bash
set -e
# build the test binary
mkdir -p build
cd build
cmake -G "CodeBlocks - Unix Makefiles" ..
make -j4
# run it
cd ..
./build/radiolib-unittest --log_level=message

View file

@ -0,0 +1,103 @@
// boost test header
#include <boost/test/unit_test.hpp>
// mock HAL
#include "TestHal.hpp"
// testing fixture
struct ModuleFixture {
TestHal* hal = nullptr;
Module* mod = nullptr;
EmulatedRadio* radioHardware = nullptr;
ModuleFixture() {
BOOST_TEST_MESSAGE("--- Module fixture setup ---");
hal = new TestHal();
radioHardware = new EmulatedRadio();
hal->connectRadio(radioHardware);
mod = new Module(hal, EMULATED_RADIO_NSS_PIN, EMULATED_RADIO_IRQ_PIN, EMULATED_RADIO_RST_PIN, EMULATED_RADIO_GPIO_PIN);
mod->init();
}
~ModuleFixture() {
BOOST_TEST_MESSAGE("--- Module fixture teardown ---");
mod->term();
delete[] mod;
delete[] hal;
}
};
BOOST_FIXTURE_TEST_SUITE(suite_Module, ModuleFixture)
BOOST_FIXTURE_TEST_CASE(Module_SPIgetRegValue_reg, ModuleFixture)
{
BOOST_TEST_MESSAGE("--- Test Module::SPIgetRegValue register access ---");
int16_t ret;
// basic register read with default config
const uint8_t address = 0x12;
const uint8_t spiTxn[] = { address, 0x00 };
ret = mod->SPIgetRegValue(address);
// check return code, value and history log
BOOST_TEST(ret >= RADIOLIB_ERR_NONE);
BOOST_TEST(ret == EMULATED_RADIO_SPI_RETURN);
BOOST_TEST(hal->spiLogMemcmp(spiTxn, sizeof(spiTxn)) == 0);
// register read masking test
const uint8_t msb = 5;
const uint8_t lsb = 1;
ret = mod->SPIgetRegValue(address, msb, lsb);
BOOST_TEST(ret == 0x3E);
// invalid mask tests (swapped MSB and LSB, out of range bit masks)
ret = mod->SPIgetRegValue(address, lsb, msb);
BOOST_TEST(ret == RADIOLIB_ERR_INVALID_BIT_RANGE);
ret = mod->SPIgetRegValue(address, 10, lsb);
BOOST_TEST(ret == RADIOLIB_ERR_INVALID_BIT_RANGE);
ret = mod->SPIgetRegValue(address, msb, 10);
BOOST_TEST(ret == RADIOLIB_ERR_INVALID_BIT_RANGE);
}
BOOST_FIXTURE_TEST_CASE(Module_SPIgetRegValue_stream, ModuleFixture)
{
BOOST_TEST_MESSAGE("--- Test Module::SPIgetRegValue stream access ---");
int16_t ret;
// change settings to stream type
mod->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_ADDR] = Module::BITS_16;
mod->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_CMD] = Module::BITS_8;
mod->spiConfig.statusPos = 1;
mod->spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_READ] = RADIOLIB_SX126X_CMD_READ_REGISTER;
mod->spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_WRITE] = RADIOLIB_SX126X_CMD_WRITE_REGISTER;
mod->spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_NOP] = RADIOLIB_SX126X_CMD_NOP;
mod->spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_STATUS] = RADIOLIB_SX126X_CMD_GET_STATUS;
mod->spiConfig.stream = true;
// basic register read
const uint8_t address = 0x12;
const uint8_t spiTxn[] = { RADIOLIB_SX126X_CMD_READ_REGISTER, 0x00, address, 0x00, 0x00 };
ret = mod->SPIgetRegValue(address);
// check return code, value and history log
BOOST_TEST(ret >= RADIOLIB_ERR_NONE);
BOOST_TEST(ret == EMULATED_RADIO_SPI_RETURN);
BOOST_TEST(hal->spiLogMemcmp(spiTxn, sizeof(spiTxn)) == 0);
// register read masking test
const uint8_t msb = 5;
const uint8_t lsb = 1;
ret = mod->SPIgetRegValue(address, msb, lsb);
BOOST_TEST(ret == 0x3E);
// invalid mask tests (swapped MSB and LSB, out of range bit masks)
ret = mod->SPIgetRegValue(address, lsb, msb);
BOOST_TEST(ret == RADIOLIB_ERR_INVALID_BIT_RANGE);
ret = mod->SPIgetRegValue(address, 10, lsb);
BOOST_TEST(ret == RADIOLIB_ERR_INVALID_BIT_RANGE);
ret = mod->SPIgetRegValue(address, msb, 10);
BOOST_TEST(ret == RADIOLIB_ERR_INVALID_BIT_RANGE);
}
BOOST_AUTO_TEST_SUITE_END()

View file

@ -0,0 +1,5 @@
#define BOOST_TEST_MODULE "RadioLib Unit test"
#include <boost/test/included/unit_test.hpp>
// intentionally left blank, boost.test creates its own entrypoint