[RF69] Reduced code redundancies

This commit is contained in:
jgromes 2019-05-19 10:47:31 +02:00
parent 55459f5271
commit bf85e16880
2 changed files with 111 additions and 199 deletions

View file

@ -8,7 +8,7 @@ RF69::RF69(Module* module) : PhysicalLayer(RF69_CRYSTAL_FREQ, RF69_DIV_EXPONENT)
int16_t RF69::begin(float freq, float br, float rxBw, float freqDev, int8_t power) { int16_t RF69::begin(float freq, float br, float rxBw, float freqDev, int8_t power) {
// set module properties // set module properties
_mod->init(USE_SPI, INT_0); _mod->init(USE_SPI, INT_0);
// try to find the RF69 chip // try to find the RF69 chip
uint8_t i = 0; uint8_t i = 0;
bool flagFound = false; bool flagFound = false;
@ -21,7 +21,7 @@ int16_t RF69::begin(float freq, float br, float rxBw, float freqDev, int8_t powe
Serial.print(F("RF69 not found! (")); Serial.print(F("RF69 not found! ("));
Serial.print(i + 1); Serial.print(i + 1);
Serial.print(F(" of 10 tries) RF69_REG_VERSION == ")); Serial.print(F(" of 10 tries) RF69_REG_VERSION == "));
char buffHex[7]; char buffHex[7];
sprintf(buffHex, "0x%04X", version); sprintf(buffHex, "0x%04X", version);
Serial.print(buffHex); Serial.print(buffHex);
@ -32,7 +32,7 @@ int16_t RF69::begin(float freq, float br, float rxBw, float freqDev, int8_t powe
i++; i++;
} }
} }
if(!flagFound) { if(!flagFound) {
DEBUG_PRINTLN(F("No RF69 found!")); DEBUG_PRINTLN(F("No RF69 found!"));
SPI.end(); SPI.end();
@ -40,110 +40,73 @@ int16_t RF69::begin(float freq, float br, float rxBw, float freqDev, int8_t powe
} else { } else {
DEBUG_PRINTLN(F("Found RF69! (match by RF69_REG_VERSION == 0x24)")); DEBUG_PRINTLN(F("Found RF69! (match by RF69_REG_VERSION == 0x24)"));
} }
// configure settings not accessible by API // configure settings not accessible by API
int16_t state = config(); int16_t state = config();
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// configure publicly accessible settings // configure publicly accessible settings
state = setFrequency(freq); state = setFrequency(freq);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
_rxBw = 125.0; _rxBw = 125.0;
state = setBitRate(br); state = setBitRate(br);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
state = setRxBandwidth(rxBw); state = setRxBandwidth(rxBw);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
state = setFrequencyDeviation(freqDev); state = setFrequencyDeviation(freqDev);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
state = setOutputPower(power); state = setOutputPower(power);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// default sync word values 0x2D01 is the same as the default in LowPowerLab RFM69 library // default sync word values 0x2D01 is the same as the default in LowPowerLab RFM69 library
uint8_t syncWord[] = {0x2D, 0x01}; uint8_t syncWord[] = {0x2D, 0x01};
state = setSyncWord(syncWord, 2); state = setSyncWord(syncWord, 2);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
return(ERR_NONE); return(ERR_NONE);
} }
int16_t RF69::transmit(uint8_t* data, size_t len, uint8_t addr) { int16_t RF69::transmit(uint8_t* data, size_t len, uint8_t addr) {
// check packet length // start transmission
if(len > 64) { int16_t state = startTransmit(data, len, addr);
return(ERR_PACKET_TOO_LONG); if(state != ERR_NONE) {
return(state);
} }
// set mode to standby
setMode(RF69_STANDBY);
// set DIO pin mapping
_mod->SPIsetRegValue(RF69_REG_DIO_MAPPING_1, RF69_DIO0_PACK_PACKET_SENT, 7, 6);
// clear interrupt flags
clearIRQFlags();
// set packet length
_mod->SPIwriteRegister(RF69_REG_FIFO, len);
// check address filtering
uint8_t filter = _mod->SPIgetRegValue(RF69_REG_PACKET_CONFIG_1, 2, 1);
if((filter == RF69_ADDRESS_FILTERING_NODE) || (filter == RF69_ADDRESS_FILTERING_NODE_BROADCAST)) {
_mod->SPIwriteRegister(RF69_REG_FIFO, addr);
}
// write packet to FIFO
_mod->SPIwriteRegisterBurst(RF69_REG_FIFO, data, len);
// set mode to transmit
setMode(RF69_TX);
_mod->SPIsetRegValue(RF69_REG_TEST_PA1, RF69_PA1_20_DBM);
_mod->SPIsetRegValue(RF69_REG_TEST_PA2, RF69_PA2_20_DBM);
// wait for transmission end // wait for transmission end
while(!digitalRead(_mod->getInt0())); while(!digitalRead(_mod->getInt0()));
// clear interrupt flags // clear interrupt flags
clearIRQFlags(); clearIRQFlags();
return(ERR_NONE); return(ERR_NONE);
} }
int16_t RF69::receive(uint8_t* data, size_t len) { int16_t RF69::receive(uint8_t* data, size_t len) {
// set mode to standby // start reception
setMode(RF69_STANDBY); int16_t state = startReceive();
if(state != ERR_NONE) {
// set DIO pin mapping return(state);
_mod->SPIsetRegValue(RF69_REG_DIO_MAPPING_1, RF69_DIO0_PACK_PAYLOAD_READY | RF69_DIO1_PACK_TIMEOUT, 7, 4); }
// clear interrupt flags
clearIRQFlags();
// enable RX timouts
_mod->SPIsetRegValue(RF69_REG_RX_TIMEOUT_1, RF69_TIMEOUT_RX_START);
_mod->SPIsetRegValue(RF69_REG_RX_TIMEOUT_2, RF69_TIMEOUT_RSSI_THRESH);
// set mode to receive
setMode(RF69_RX);
_mod->SPIsetRegValue(RF69_REG_TEST_PA1, RF69_PA1_NORMAL);
_mod->SPIsetRegValue(RF69_REG_TEST_PA2, RF69_PA2_NORMAL);
// wait for packet reception or timeout // wait for packet reception or timeout
while(!digitalRead(_mod->getInt0())) { while(!digitalRead(_mod->getInt0())) {
if(digitalRead(_mod->getInt1())) { if(digitalRead(_mod->getInt1())) {
@ -151,35 +114,9 @@ int16_t RF69::receive(uint8_t* data, size_t len) {
return(ERR_RX_TIMEOUT); return(ERR_RX_TIMEOUT);
} }
} }
// get packet length
size_t length = _mod->SPIreadRegister(RF69_REG_FIFO);
// check address filtering
uint8_t filter = _mod->SPIgetRegValue(RF69_REG_PACKET_CONFIG_1, 2, 1);
if((filter == RF69_ADDRESS_FILTERING_NODE) || (filter == RF69_ADDRESS_FILTERING_NODE_BROADCAST)) {
_mod->SPIreadRegister(RF69_REG_FIFO);
}
// read packet data // read packet data
if(len == 0) { return(readData(data, len));
// argument len equal to zero indicates String call, which means dynamically allocated data array
// dispose of the original and create a new one
delete[] data;
data = new uint8_t[length + 1];
}
_mod->SPIreadRegisterBurst(RF69_REG_FIFO, length, data);
// add terminating null
data[length] = 0;
// update RSSI
lastPacketRSSI = -1.0 * (_mod->SPIgetRegValue(RF69_REG_RSSI_VALUE)/2.0);
// clear interrupt flags
clearIRQFlags();
return(ERR_NONE);
} }
int16_t RF69::sleep() { int16_t RF69::sleep() {
@ -192,22 +129,22 @@ int16_t RF69::standby() {
return(setMode(RF69_STANDBY)); return(setMode(RF69_STANDBY));
} }
int16_t RF69::transmitDirect(uint32_t FRF) { int16_t RF69::transmitDirect(uint32_t frf) {
// user requested to start transmitting immediately (required for RTTY) // user requested to start transmitting immediately (required for RTTY)
if(FRF != 0) { if(frf != 0) {
_mod->SPIwriteRegister(RF69_REG_FRF_MSB, (FRF & 0xFF0000) >> 16); _mod->SPIwriteRegister(RF69_REG_FRF_MSB, (frf & 0xFF0000) >> 16);
_mod->SPIwriteRegister(RF69_REG_FRF_MID, (FRF & 0x00FF00) >> 8); _mod->SPIwriteRegister(RF69_REG_FRF_MID, (frf & 0x00FF00) >> 8);
_mod->SPIwriteRegister(RF69_REG_FRF_LSB, FRF & 0x0000FF); _mod->SPIwriteRegister(RF69_REG_FRF_LSB, frf & 0x0000FF);
return(setMode(RF69_TX)); return(setMode(RF69_TX));
} }
// activate direct mode // activate direct mode
int16_t state = directMode(); int16_t state = directMode();
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// start transmitting // start transmitting
return(setMode(RF69_TX)); return(setMode(RF69_TX));
} }
@ -218,7 +155,7 @@ int16_t RF69::receiveDirect() {
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// start receiving // start receiving
return(setMode(RF69_RX)); return(setMode(RF69_RX));
} }
@ -229,10 +166,10 @@ int16_t RF69::directMode() {
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// set DIO mapping // set DIO mapping
state = _mod->SPIsetRegValue(RF69_REG_DIO_MAPPING_1, RF69_DIO1_CONT_DCLK | RF69_DIO2_CONT_DATA, 5, 2); state = _mod->SPIsetRegValue(RF69_REG_DIO_MAPPING_1, RF69_DIO1_CONT_DCLK | RF69_DIO2_CONT_DATA, 5, 2);
// set continuous mode // set continuous mode
state |= _mod->SPIsetRegValue(RF69_REG_DATA_MODUL, RF69_CONTINUOUS_MODE_WITH_SYNC, 6, 5); state |= _mod->SPIsetRegValue(RF69_REG_DATA_MODUL, RF69_CONTINUOUS_MODE_WITH_SYNC, 6, 5);
return(state); return(state);
@ -257,25 +194,25 @@ int16_t RF69::disableAES() {
int16_t RF69::startReceive() { int16_t RF69::startReceive() {
// set mode to standby // set mode to standby
int16_t state = setMode(RF69_STANDBY); int16_t state = setMode(RF69_STANDBY);
// set DIO pin mapping // set DIO pin mapping
state |= _mod->SPIsetRegValue(RF69_REG_DIO_MAPPING_1, RF69_DIO0_PACK_PAYLOAD_READY, 7, 6); state |= _mod->SPIsetRegValue(RF69_REG_DIO_MAPPING_1, RF69_DIO0_PACK_PAYLOAD_READY, 7, 6);
// clear interrupt flags // clear interrupt flags
clearIRQFlags(); clearIRQFlags();
// disable RX timeouts // disable RX timeouts
state |= _mod->SPIsetRegValue(RF69_REG_RX_TIMEOUT_1, RF69_TIMEOUT_RX_START_OFF); state |= _mod->SPIsetRegValue(RF69_REG_RX_TIMEOUT_1, RF69_TIMEOUT_RX_START_OFF);
state |= _mod->SPIsetRegValue(RF69_REG_RX_TIMEOUT_2, RF69_TIMEOUT_RSSI_THRESH_OFF); state |= _mod->SPIsetRegValue(RF69_REG_RX_TIMEOUT_2, RF69_TIMEOUT_RSSI_THRESH_OFF);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// set mode to receive // set mode to receive
state = setMode(RF69_RX); state = setMode(RF69_RX);
state |= _mod->SPIsetRegValue(RF69_REG_TEST_PA1, RF69_PA1_NORMAL); state |= _mod->SPIsetRegValue(RF69_REG_TEST_PA1, RF69_PA1_NORMAL);
state |= _mod->SPIsetRegValue(RF69_REG_TEST_PA2, RF69_PA2_NORMAL); state |= _mod->SPIsetRegValue(RF69_REG_TEST_PA2, RF69_PA2_NORMAL);
return(state); return(state);
} }
@ -287,76 +224,54 @@ void RF69::setDio1Action(void (*func)(void)) {
attachInterrupt(digitalPinToInterrupt(_mod->getInt1()), func, RISING); attachInterrupt(digitalPinToInterrupt(_mod->getInt1()), func, RISING);
} }
int16_t RF69::startTransmit(String& str, uint8_t addr) {
return(RF69::startTransmit(str.c_str(), addr));
}
int16_t RF69::startTransmit(const char* str, uint8_t addr) {
return(RF69::startTransmit((uint8_t*)str, strlen(str), addr));
}
int16_t RF69::startTransmit(uint8_t* data, size_t len, uint8_t addr) { int16_t RF69::startTransmit(uint8_t* data, size_t len, uint8_t addr) {
// check packet length // check packet length
if(len > 64) { if(len > 64) {
return(ERR_PACKET_TOO_LONG); return(ERR_PACKET_TOO_LONG);
} }
// set mode to standby // set mode to standby
int16_t state = setMode(RF69_STANDBY); int16_t state = setMode(RF69_STANDBY);
// set DIO pin mapping // set DIO pin mapping
state |= _mod->SPIsetRegValue(RF69_REG_DIO_MAPPING_1, RF69_DIO0_PACK_PACKET_SENT, 7, 6); state |= _mod->SPIsetRegValue(RF69_REG_DIO_MAPPING_1, RF69_DIO0_PACK_PACKET_SENT, 7, 6);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// clear interrupt flags // clear interrupt flags
clearIRQFlags(); clearIRQFlags();
// set packet length // set packet length
_mod->SPIwriteRegister(RF69_REG_FIFO, len); _mod->SPIwriteRegister(RF69_REG_FIFO, len);
// check address filtering // check address filtering
uint8_t filter = _mod->SPIgetRegValue(RF69_REG_PACKET_CONFIG_1, 2, 1); uint8_t filter = _mod->SPIgetRegValue(RF69_REG_PACKET_CONFIG_1, 2, 1);
if((filter == RF69_ADDRESS_FILTERING_NODE) || (filter == RF69_ADDRESS_FILTERING_NODE_BROADCAST)) { if((filter == RF69_ADDRESS_FILTERING_NODE) || (filter == RF69_ADDRESS_FILTERING_NODE_BROADCAST)) {
_mod->SPIwriteRegister(RF69_REG_FIFO, addr); _mod->SPIwriteRegister(RF69_REG_FIFO, addr);
} }
// write packet to FIFO // write packet to FIFO
_mod->SPIwriteRegisterBurst(RF69_REG_FIFO, data, len); _mod->SPIwriteRegisterBurst(RF69_REG_FIFO, data, len);
// set mode to transmit
state = setMode(RF69_TX);
state |= _mod->SPIsetRegValue(RF69_REG_TEST_PA1, RF69_PA1_20_DBM);
state |= _mod->SPIsetRegValue(RF69_REG_TEST_PA2, RF69_PA2_20_DBM);
return(state);
}
int16_t RF69::readData(String& str, size_t len) { // set mode to transmit
// create temporary array to store received data state = _mod->SPIsetRegValue(RF69_REG_TEST_PA1, RF69_PA1_20_DBM);
char* data = new char[len]; state |= _mod->SPIsetRegValue(RF69_REG_TEST_PA2, RF69_PA2_20_DBM);
int16_t state = RF69::readData((uint8_t*)data, len); state |= setMode(RF69_TX);
// if packet was received successfully, copy data into String
if(state == ERR_NONE) {
str = String(data);
}
delete[] data;
return(state); return(state);
} }
int16_t RF69::readData(uint8_t* data, size_t len) { int16_t RF69::readData(uint8_t* data, size_t len) {
// get packet length // get packet length
size_t length = _mod->SPIreadRegister(RF69_REG_FIFO); size_t length = _mod->SPIreadRegister(RF69_REG_FIFO);
// check address filtering // check address filtering
uint8_t filter = _mod->SPIgetRegValue(RF69_REG_PACKET_CONFIG_1, 2, 1); uint8_t filter = _mod->SPIgetRegValue(RF69_REG_PACKET_CONFIG_1, 2, 1);
if((filter == RF69_ADDRESS_FILTERING_NODE) || (filter == RF69_ADDRESS_FILTERING_NODE_BROADCAST)) { if((filter == RF69_ADDRESS_FILTERING_NODE) || (filter == RF69_ADDRESS_FILTERING_NODE_BROADCAST)) {
_mod->SPIreadRegister(RF69_REG_FIFO); _mod->SPIreadRegister(RF69_REG_FIFO);
} }
// read packet data // read packet data
if(len == 0) { if(len == 0) {
// argument len equal to zero indicates String call, which means dynamically allocated data array // argument len equal to zero indicates String call, which means dynamically allocated data array
@ -365,18 +280,16 @@ int16_t RF69::readData(uint8_t* data, size_t len) {
data = new uint8_t[length + 1]; data = new uint8_t[length + 1];
} }
_mod->SPIreadRegisterBurst(RF69_REG_FIFO, length, data); _mod->SPIreadRegisterBurst(RF69_REG_FIFO, length, data);
// add terminating null // add terminating null
if(len == 0) { data[length] = 0;
data[length] = 0;
}
// update RSSI // update RSSI
lastPacketRSSI = -1.0 * (_mod->SPIgetRegValue(RF69_REG_RSSI_VALUE)/2.0); lastPacketRSSI = -1.0 * (_mod->SPIgetRegValue(RF69_REG_RSSI_VALUE)/2.0);
// clear interrupt flags // clear interrupt flags
clearIRQFlags(); clearIRQFlags();
return(ERR_NONE); return(ERR_NONE);
} }
@ -387,10 +300,10 @@ int16_t RF69::setFrequency(float freq) {
((freq > 862.0) && (freq < 1020.0)))) { ((freq > 862.0) && (freq < 1020.0)))) {
return(ERR_INVALID_FREQUENCY); return(ERR_INVALID_FREQUENCY);
} }
// set mode to standby // set mode to standby
setMode(RF69_STANDBY); setMode(RF69_STANDBY);
//set carrier frequency //set carrier frequency
uint32_t FRF = (freq * (uint32_t(1) << RF69_DIV_EXPONENT)) / RF69_CRYSTAL_FREQ; uint32_t FRF = (freq * (uint32_t(1) << RF69_DIV_EXPONENT)) / RF69_CRYSTAL_FREQ;
int16_t state = _mod->SPIsetRegValue(RF69_REG_FRF_MSB, (FRF & 0xFF0000) >> 16, 7, 0); int16_t state = _mod->SPIsetRegValue(RF69_REG_FRF_MSB, (FRF & 0xFF0000) >> 16, 7, 0);
@ -405,15 +318,15 @@ int16_t RF69::setBitRate(float br) {
if((br < 1.2) || (br > 300.0)) { if((br < 1.2) || (br > 300.0)) {
return(ERR_INVALID_BIT_RATE); return(ERR_INVALID_BIT_RATE);
} }
// check bitrate-bandwidth ratio // check bitrate-bandwidth ratio
if(!(br < 2000 * _rxBw)) { if(!(br < 2000 * _rxBw)) {
return(ERR_INVALID_BIT_RATE_BW_RATIO); return(ERR_INVALID_BIT_RATE_BW_RATIO);
} }
// set mode to standby // set mode to standby
setMode(RF69_STANDBY); setMode(RF69_STANDBY);
// set bit rate // set bit rate
uint16_t bitRate = 32000 / br; uint16_t bitRate = 32000 / br;
int16_t state = _mod->SPIsetRegValue(RF69_REG_BITRATE_MSB, (bitRate & 0xFF00) >> 8, 7, 0); int16_t state = _mod->SPIsetRegValue(RF69_REG_BITRATE_MSB, (bitRate & 0xFF00) >> 8, 7, 0);
@ -429,7 +342,7 @@ int16_t RF69::setRxBandwidth(float rxBw) {
if(!(_br < 2000 * rxBw)) { if(!(_br < 2000 * rxBw)) {
return(ERR_INVALID_BIT_RATE_BW_RATIO); return(ERR_INVALID_BIT_RATE_BW_RATIO);
} }
// check allowed bandwidth values // check allowed bandwidth values
uint8_t bwMant, bwExp; uint8_t bwMant, bwExp;
if(rxBw == 2.6) { if(rxBw == 2.6) {
@ -507,10 +420,10 @@ int16_t RF69::setRxBandwidth(float rxBw) {
} else { } else {
return(ERR_INVALID_RX_BANDWIDTH); return(ERR_INVALID_RX_BANDWIDTH);
} }
// set mode to standby // set mode to standby
setMode(RF69_STANDBY); setMode(RF69_STANDBY);
// set Rx bandwidth // set Rx bandwidth
int16_t state = _mod->SPIsetRegValue(RF69_REG_RX_BW, RF69_DCC_FREQ | bwMant | bwExp, 7, 0); int16_t state = _mod->SPIsetRegValue(RF69_REG_RX_BW, RF69_DCC_FREQ | bwMant | bwExp, 7, 0);
if(state == ERR_NONE) { if(state == ERR_NONE) {
@ -524,10 +437,10 @@ int16_t RF69::setFrequencyDeviation(float freqDev) {
if(!((freqDev + _br/2 <= 500))) { if(!((freqDev + _br/2 <= 500))) {
return(ERR_INVALID_FREQUENCY_DEVIATION); return(ERR_INVALID_FREQUENCY_DEVIATION);
} }
// set mode to standby // set mode to standby
setMode(RF69_STANDBY); setMode(RF69_STANDBY);
// set frequency deviation from carrier frequency // set frequency deviation from carrier frequency
uint32_t base = 1; uint32_t base = 1;
uint32_t FDEV = (freqDev * (base << 19)) / 32000; uint32_t FDEV = (freqDev * (base << 19)) / 32000;
@ -542,10 +455,10 @@ int16_t RF69::setOutputPower(int8_t power) {
if((power < -18) || (power > 17)) { if((power < -18) || (power > 17)) {
return(ERR_INVALID_OUTPUT_POWER); return(ERR_INVALID_OUTPUT_POWER);
} }
// set mode to standby // set mode to standby
setMode(RF69_STANDBY); setMode(RF69_STANDBY);
// set output power // set output power
int16_t state; int16_t state;
if(power > 13) { if(power > 13) {
@ -564,20 +477,20 @@ int16_t RF69::setSyncWord(uint8_t* syncWord, size_t len, uint8_t maxErrBits) {
if((maxErrBits > 7) || (len > 8)) { if((maxErrBits > 7) || (len > 8)) {
return(ERR_INVALID_SYNC_WORD); return(ERR_INVALID_SYNC_WORD);
} }
// sync word must not contain value 0x00 // sync word must not contain value 0x00
for(uint8_t i = 0; i < len; i++) { for(uint8_t i = 0; i < len; i++) {
if(syncWord[i] == 0x00) { if(syncWord[i] == 0x00) {
return(ERR_INVALID_SYNC_WORD); return(ERR_INVALID_SYNC_WORD);
} }
} }
// enable sync word recognition // enable sync word recognition
int16_t state = _mod->SPIsetRegValue(RF69_REG_SYNC_CONFIG, RF69_SYNC_ON | RF69_FIFO_FILL_CONDITION_SYNC | (len - 1) << 3 | maxErrBits, 7, 0); int16_t state = _mod->SPIsetRegValue(RF69_REG_SYNC_CONFIG, RF69_SYNC_ON | RF69_FIFO_FILL_CONDITION_SYNC | (len - 1) << 3 | maxErrBits, 7, 0);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// set sync word // set sync word
_mod->SPIwriteRegisterBurst(RF69_REG_SYNC_VALUE_1, syncWord, len); _mod->SPIwriteRegisterBurst(RF69_REG_SYNC_VALUE_1, syncWord, len);
return(ERR_NONE); return(ERR_NONE);
@ -589,7 +502,7 @@ int16_t RF69::setNodeAddress(uint8_t nodeAddr) {
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// set node address // set node address
return(_mod->SPIsetRegValue(RF69_REG_NODE_ADRS, nodeAddr)); return(_mod->SPIsetRegValue(RF69_REG_NODE_ADRS, nodeAddr));
} }
@ -600,7 +513,7 @@ int16_t RF69::setBroadcastAddress(uint8_t broadAddr) {
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// set broadcast address // set broadcast address
return(_mod->SPIsetRegValue(RF69_REG_BROADCAST_ADRS, broadAddr)); return(_mod->SPIsetRegValue(RF69_REG_BROADCAST_ADRS, broadAddr));
} }
@ -611,13 +524,13 @@ int16_t RF69::disableAddressFiltering() {
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// set node address to default (0x00) // set node address to default (0x00)
state = _mod->SPIsetRegValue(RF69_REG_NODE_ADRS, 0x00); state = _mod->SPIsetRegValue(RF69_REG_NODE_ADRS, 0x00);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// set broadcast address to default (0x00) // set broadcast address to default (0x00)
return(_mod->SPIsetRegValue(RF69_REG_BROADCAST_ADRS, 0x00)); return(_mod->SPIsetRegValue(RF69_REG_BROADCAST_ADRS, 0x00));
} }
@ -629,17 +542,17 @@ void RF69::setAmbientTemperature(int16_t tempAmbient) {
int16_t RF69::getTemperature() { int16_t RF69::getTemperature() {
// set mode to STANDBY // set mode to STANDBY
setMode(RF69_STANDBY); setMode(RF69_STANDBY);
// start temperature measurement // start temperature measurement
_mod->SPIsetRegValue(RF69_REG_TEMP_1, RF69_TEMP_MEAS_START, 3, 3); _mod->SPIsetRegValue(RF69_REG_TEMP_1, RF69_TEMP_MEAS_START, 3, 3);
// wait until measurement is finished // wait until measurement is finished
while(_mod->SPIgetRegValue(RF69_REG_TEMP_1, 2, 2) == RF69_TEMP_MEAS_RUNNING) { while(_mod->SPIgetRegValue(RF69_REG_TEMP_1, 2, 2) == RF69_TEMP_MEAS_RUNNING) {
// check every 10 us // check every 10 us
delay(10); delay(10);
} }
int8_t rawTemp = _mod->SPIgetRegValue(RF69_REG_TEMP_2); int8_t rawTemp = _mod->SPIgetRegValue(RF69_REG_TEMP_2);
return(0 - (rawTemp + _tempOffset)); return(0 - (rawTemp + _tempOffset));
} }
@ -651,41 +564,41 @@ int16_t RF69::config() {
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// set operation modes // set operation modes
state = _mod->SPIsetRegValue(RF69_REG_OP_MODE, RF69_SEQUENCER_ON | RF69_LISTEN_OFF, 7, 6); state = _mod->SPIsetRegValue(RF69_REG_OP_MODE, RF69_SEQUENCER_ON | RF69_LISTEN_OFF, 7, 6);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// enable over-current protection // enable over-current protection
state = _mod->SPIsetRegValue(RF69_REG_OCP, RF69_OCP_ON, 4, 4); state = _mod->SPIsetRegValue(RF69_REG_OCP, RF69_OCP_ON, 4, 4);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// set data mode, modulation type and shaping // set data mode, modulation type and shaping
state = _mod->SPIsetRegValue(RF69_REG_DATA_MODUL, RF69_PACKET_MODE | RF69_FSK, 6, 3); state = _mod->SPIsetRegValue(RF69_REG_DATA_MODUL, RF69_PACKET_MODE | RF69_FSK, 6, 3);
state |= _mod->SPIsetRegValue(RF69_REG_DATA_MODUL, RF69_FSK_GAUSSIAN_0_3, 1, 0); state |= _mod->SPIsetRegValue(RF69_REG_DATA_MODUL, RF69_FSK_GAUSSIAN_0_3, 1, 0);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// set RSSI threshold // set RSSI threshold
state = _mod->SPIsetRegValue(RF69_REG_RSSI_THRESH, RF69_RSSI_THRESHOLD, 7, 0); state = _mod->SPIsetRegValue(RF69_REG_RSSI_THRESH, RF69_RSSI_THRESHOLD, 7, 0);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// reset FIFO flag // reset FIFO flag
_mod->SPIwriteRegister(RF69_REG_IRQ_FLAGS_2, RF69_IRQ_FIFO_OVERRUN); _mod->SPIwriteRegister(RF69_REG_IRQ_FLAGS_2, RF69_IRQ_FIFO_OVERRUN);
// disable ClkOut on DIO5 // disable ClkOut on DIO5
state = _mod->SPIsetRegValue(RF69_REG_DIO_MAPPING_2, RF69_CLK_OUT_OFF, 2, 0); state = _mod->SPIsetRegValue(RF69_REG_DIO_MAPPING_2, RF69_CLK_OUT_OFF, 2, 0);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// set packet configuration and disable encryption // set packet configuration and disable encryption
state = _mod->SPIsetRegValue(RF69_REG_PACKET_CONFIG_1, RF69_PACKET_FORMAT_VARIABLE | RF69_DC_FREE_NONE | RF69_CRC_ON | RF69_CRC_AUTOCLEAR_ON | RF69_ADDRESS_FILTERING_OFF, 7, 1); state = _mod->SPIsetRegValue(RF69_REG_PACKET_CONFIG_1, RF69_PACKET_FORMAT_VARIABLE | RF69_DC_FREE_NONE | RF69_CRC_ON | RF69_CRC_AUTOCLEAR_ON | RF69_ADDRESS_FILTERING_OFF, 7, 1);
state |= _mod->SPIsetRegValue(RF69_REG_PACKET_CONFIG_2, RF69_INTER_PACKET_RX_DELAY, 7, 4); state |= _mod->SPIsetRegValue(RF69_REG_PACKET_CONFIG_2, RF69_INTER_PACKET_RX_DELAY, 7, 4);
@ -693,32 +606,32 @@ int16_t RF69::config() {
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// set payload length // set payload length
state = _mod->SPIsetRegValue(RF69_REG_PAYLOAD_LENGTH, RF69_PAYLOAD_LENGTH, 7, 0); state = _mod->SPIsetRegValue(RF69_REG_PAYLOAD_LENGTH, RF69_PAYLOAD_LENGTH, 7, 0);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// set FIFO threshold // set FIFO threshold
state = _mod->SPIsetRegValue(RF69_REG_FIFO_THRESH, RF69_TX_START_CONDITION_FIFO_NOT_EMPTY | RF69_FIFO_THRESHOLD, 7, 0); state = _mod->SPIsetRegValue(RF69_REG_FIFO_THRESH, RF69_TX_START_CONDITION_FIFO_NOT_EMPTY | RF69_FIFO_THRESHOLD, 7, 0);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// set Rx timeouts // set Rx timeouts
state = _mod->SPIsetRegValue(RF69_REG_RX_TIMEOUT_1, RF69_TIMEOUT_RX_START, 7, 0); state = _mod->SPIsetRegValue(RF69_REG_RX_TIMEOUT_1, RF69_TIMEOUT_RX_START, 7, 0);
state = _mod->SPIsetRegValue(RF69_REG_RX_TIMEOUT_2, RF69_TIMEOUT_RSSI_THRESH, 7, 0); state = _mod->SPIsetRegValue(RF69_REG_RX_TIMEOUT_2, RF69_TIMEOUT_RSSI_THRESH, 7, 0);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
// enable improved fading margin // enable improved fading margin
state = _mod->SPIsetRegValue(RF69_REG_TEST_DAGC, RF69_CONTINUOUS_DAGC_LOW_BETA_OFF, 7, 0); state = _mod->SPIsetRegValue(RF69_REG_TEST_DAGC, RF69_CONTINUOUS_DAGC_LOW_BETA_OFF, 7, 0);
if(state != ERR_NONE) { if(state != ERR_NONE) {
return(state); return(state);
} }
return(ERR_NONE); return(ERR_NONE);
} }

View file

@ -205,7 +205,7 @@
#define RF69_DCC_FREQ 0b01000000 // 7 5 DC offset canceller cutoff frequency (4% Rx BW by default) #define RF69_DCC_FREQ 0b01000000 // 7 5 DC offset canceller cutoff frequency (4% Rx BW by default)
#define RF69_RX_BW_MANT_16 0b00000000 // 4 3 Channel filter bandwidth FSK: RxBw = F(XOSC)/(RxBwMant * 2^(RxBwExp + 2)) #define RF69_RX_BW_MANT_16 0b00000000 // 4 3 Channel filter bandwidth FSK: RxBw = F(XOSC)/(RxBwMant * 2^(RxBwExp + 2))
#define RF69_RX_BW_MANT_20 0b00001000 // 4 3 OOK: RxBw = F(XOSC)/(RxBwMant * 2^(RxBwExp + 3)) #define RF69_RX_BW_MANT_20 0b00001000 // 4 3 OOK: RxBw = F(XOSC)/(RxBwMant * 2^(RxBwExp + 3))
#define RF69_RX_BW_MANT_24 0b00010000 // 4 3 #define RF69_RX_BW_MANT_24 0b00010000 // 4 3
#define RF69_RX_BW_EXP 0b00000101 // 2 0 default RxBwExp value = 5 #define RF69_RX_BW_EXP 0b00000101 // 2 0 default RxBwExp value = 5
// RF69_REG_AFC_BW // RF69_REG_AFC_BW
@ -285,7 +285,7 @@
#define RF69_DIO1_PACK_FIFO_NOT_EMPTY 0b00100000 // 5 4 #define RF69_DIO1_PACK_FIFO_NOT_EMPTY 0b00100000 // 5 4
#define RF69_DIO1_PACK_PLL_LOCK 0b00110000 // 5 4 #define RF69_DIO1_PACK_PLL_LOCK 0b00110000 // 5 4
#define RF69_DIO1_PACK_TIMEOUT 0b00110000 // 5 4 #define RF69_DIO1_PACK_TIMEOUT 0b00110000 // 5 4
#define RF69_DIO2_CONT_DATA 0b00000000 // 3 2 #define RF69_DIO2_CONT_DATA 0b00000000 // 3 2
// RF69_REG_DIO_MAPPING_2 // RF69_REG_DIO_MAPPING_2
#define RF69_CLK_OUT_FXOSC 0b00000000 // 2 0 ClkOut frequency: F(XOSC) #define RF69_CLK_OUT_FXOSC 0b00000000 // 2 0 ClkOut frequency: F(XOSC)
@ -329,7 +329,7 @@
// RF69_REG_PREAMBLE_MSB + REG_PREAMBLE_MSB // RF69_REG_PREAMBLE_MSB + REG_PREAMBLE_MSB
#define RF69_PREAMBLE_MSB 0x00 // 7 0 2-byte preamble size value #define RF69_PREAMBLE_MSB 0x00 // 7 0 2-byte preamble size value
#define RF69_PREAMBLE_LSB 0x03 // 7 0 #define RF69_PREAMBLE_LSB 0x03 // 7 0
// RF69_REG_SYNC_CONFIG // RF69_REG_SYNC_CONFIG
#define RF69_SYNC_OFF 0b00000000 // 7 7 sync word detection off #define RF69_SYNC_OFF 0b00000000 // 7 7 sync word detection off
@ -424,38 +424,37 @@ class RF69: public PhysicalLayer {
// introduce PhysicalLayer overloads // introduce PhysicalLayer overloads
using PhysicalLayer::transmit; using PhysicalLayer::transmit;
using PhysicalLayer::receive; using PhysicalLayer::receive;
using PhysicalLayer::startTransmit;
using PhysicalLayer::readData;
// constructor // constructor
RF69(Module* module); RF69(Module* module);
// public member variables // public member variables
float lastPacketRSSI; float lastPacketRSSI;
// basic methods // basic methods
int16_t begin(float freq = 434.0, float br = 48.0, float rxBw = 125.0, float freqDev = 50.0, int8_t power = 13); int16_t begin(float freq = 434.0, float br = 48.0, float rxBw = 125.0, float freqDev = 50.0, int8_t power = 13);
int16_t transmit(uint8_t* data, size_t len, uint8_t addr = 0); int16_t transmit(uint8_t* data, size_t len, uint8_t addr = 0);
int16_t receive(uint8_t* data, size_t len); int16_t receive(uint8_t* data, size_t len);
int16_t sleep(); int16_t sleep();
int16_t standby(); int16_t standby();
int16_t transmitDirect(uint32_t FRF = 0); int16_t transmitDirect(uint32_t frf = 0);
int16_t receiveDirect(); int16_t receiveDirect();
int16_t packetMode(); int16_t packetMode();
// hardware AES support // hardware AES support
void setAESKey(uint8_t* key); void setAESKey(uint8_t* key);
int16_t enableAES(); int16_t enableAES();
int16_t disableAES(); int16_t disableAES();
// interrupt methods // interrupt methods
void setDio0Action(void (*func)(void)); void setDio0Action(void (*func)(void));
void setDio1Action(void (*func)(void)); void setDio1Action(void (*func)(void));
int16_t startTransmit(String& str, uint8_t addr = 0);
int16_t startTransmit(const char* str, uint8_t addr = 0);
int16_t startTransmit(uint8_t* data, size_t len, uint8_t addr = 0); int16_t startTransmit(uint8_t* data, size_t len, uint8_t addr = 0);
int16_t startReceive(); int16_t startReceive();
int16_t readData(String& str, size_t len = 0);
int16_t readData(uint8_t* data, size_t len); int16_t readData(uint8_t* data, size_t len);
// configuration methods // configuration methods
int16_t setFrequency(float freq); int16_t setFrequency(float freq);
int16_t setBitRate(float br); int16_t setBitRate(float br);
@ -466,21 +465,21 @@ class RF69: public PhysicalLayer {
int16_t setNodeAddress(uint8_t nodeAddr); int16_t setNodeAddress(uint8_t nodeAddr);
int16_t setBroadcastAddress(uint8_t broadAddr); int16_t setBroadcastAddress(uint8_t broadAddr);
int16_t disableAddressFiltering(); int16_t disableAddressFiltering();
// measurement methods // measurement methods
void setAmbientTemperature(int16_t tempAmbient); void setAmbientTemperature(int16_t tempAmbient);
int16_t getTemperature(); int16_t getTemperature();
protected: protected:
Module* _mod; Module* _mod;
float _br; float _br;
float _rxBw; float _rxBw;
int16_t _tempOffset; int16_t _tempOffset;
int16_t config(); int16_t config();
int16_t directMode(); int16_t directMode();
private: private:
int16_t setMode(uint8_t mode); int16_t setMode(uint8_t mode);
void clearIRQFlags(); void clearIRQFlags();