[nRF24] Update to 5.0.0

This commit is contained in:
jgromes 2021-11-14 11:43:17 +01:00
parent eb9903f183
commit a229912789
6 changed files with 286 additions and 284 deletions

View file

@ -35,7 +35,7 @@ void setup() {
// initialize nRF24 with default settings // initialize nRF24 with default settings
Serial.print(F("[nRF24] Initializing ... ")); Serial.print(F("[nRF24] Initializing ... "));
int state = radio.begin(); int state = radio.begin();
if(state == ERR_NONE) { if(state == RADIOLIB_ERR_NONE) {
Serial.println(F("success!")); Serial.println(F("success!"));
} else { } else {
Serial.print(F("failed, code ")); Serial.print(F("failed, code "));
@ -50,7 +50,7 @@ void setup() {
Serial.print(F("[nRF24] Setting address for receive pipe 0 ... ")); Serial.print(F("[nRF24] Setting address for receive pipe 0 ... "));
byte addr[] = {0x01, 0x23, 0x45, 0x67, 0x89}; byte addr[] = {0x01, 0x23, 0x45, 0x67, 0x89};
state = radio.setReceivePipe(0, addr); state = radio.setReceivePipe(0, addr);
if(state == ERR_NONE) { if(state == RADIOLIB_ERR_NONE) {
Serial.println(F("success!")); Serial.println(F("success!"));
} else { } else {
Serial.print(F("failed, code ")); Serial.print(F("failed, code "));
@ -75,7 +75,7 @@ void loop() {
int state = radio.receive(byteArr, 8); int state = radio.receive(byteArr, 8);
*/ */
if (state == ERR_NONE) { if (state == RADIOLIB_ERR_NONE) {
// packet was successfully received // packet was successfully received
Serial.println(F("success!")); Serial.println(F("success!"));
@ -83,7 +83,7 @@ void loop() {
Serial.print(F("[nRF24] Data:\t\t")); Serial.print(F("[nRF24] Data:\t\t"));
Serial.println(str); Serial.println(str);
} else if (state == ERR_RX_TIMEOUT) { } else if (state == RADIOLIB_ERR_RX_TIMEOUT) {
// timeout occurred while waiting for a packet // timeout occurred while waiting for a packet
Serial.println(F("timeout!")); Serial.println(F("timeout!"));

View file

@ -36,7 +36,7 @@ void setup() {
// initialize nRF24 with default settings // initialize nRF24 with default settings
Serial.print(F("[nRF24] Initializing ... ")); Serial.print(F("[nRF24] Initializing ... "));
int state = radio.begin(); int state = radio.begin();
if(state == ERR_NONE) { if(state == RADIOLIB_ERR_NONE) {
Serial.println(F("success!")); Serial.println(F("success!"));
} else { } else {
Serial.print(F("failed, code ")); Serial.print(F("failed, code "));
@ -51,7 +51,7 @@ void setup() {
Serial.print(F("[nRF24] Setting address for receive pipe 0 ... ")); Serial.print(F("[nRF24] Setting address for receive pipe 0 ... "));
byte addr[] = {0x01, 0x23, 0x45, 0x67, 0x89}; byte addr[] = {0x01, 0x23, 0x45, 0x67, 0x89};
state = radio.setReceivePipe(0, addr); state = radio.setReceivePipe(0, addr);
if(state == ERR_NONE) { if(state == RADIOLIB_ERR_NONE) {
Serial.println(F("success!")); Serial.println(F("success!"));
} else { } else {
Serial.print(F("failed, code ")); Serial.print(F("failed, code "));
@ -66,7 +66,7 @@ void setup() {
// start listening // start listening
Serial.print(F("[nRF24] Starting to listen ... ")); Serial.print(F("[nRF24] Starting to listen ... "));
state = radio.startReceive(); state = radio.startReceive();
if (state == ERR_NONE) { if (state == RADIOLIB_ERR_NONE) {
Serial.println(F("success!")); Serial.println(F("success!"));
} else { } else {
Serial.print(F("failed, code ")); Serial.print(F("failed, code "));
@ -124,7 +124,7 @@ void loop() {
int state = radio.readData(byteArr, 8); int state = radio.readData(byteArr, 8);
*/ */
if (state == ERR_NONE) { if (state == RADIOLIB_ERR_NONE) {
// packet was successfully received // packet was successfully received
Serial.println(F("[nRF24] Received packet!")); Serial.println(F("[nRF24] Received packet!"));

View file

@ -35,7 +35,7 @@ void setup() {
// initialize nRF24 with default settings // initialize nRF24 with default settings
Serial.print(F("[nRF24] Initializing ... ")); Serial.print(F("[nRF24] Initializing ... "));
int state = radio.begin(); int state = radio.begin();
if(state == ERR_NONE) { if(state == RADIOLIB_ERR_NONE) {
Serial.println(F("success!")); Serial.println(F("success!"));
} else { } else {
Serial.print(F("failed, code ")); Serial.print(F("failed, code "));
@ -50,7 +50,7 @@ void setup() {
byte addr[] = {0x01, 0x23, 0x45, 0x67, 0x89}; byte addr[] = {0x01, 0x23, 0x45, 0x67, 0x89};
Serial.print(F("[nRF24] Setting transmit pipe ... ")); Serial.print(F("[nRF24] Setting transmit pipe ... "));
state = radio.setTransmitPipe(addr); state = radio.setTransmitPipe(addr);
if(state == ERR_NONE) { if(state == RADIOLIB_ERR_NONE) {
Serial.println(F("success!")); Serial.println(F("success!"));
} else { } else {
Serial.print(F("failed, code ")); Serial.print(F("failed, code "));
@ -66,20 +66,20 @@ void loop() {
// 32 characters long // 32 characters long
int state = radio.transmit("Hello World!"); int state = radio.transmit("Hello World!");
if (state == ERR_NONE) { if (state == RADIOLIB_ERR_NONE) {
// the packet was successfully transmitted // the packet was successfully transmitted
Serial.println(F("success!")); Serial.println(F("success!"));
} else if (state == ERR_PACKET_TOO_LONG) { } else if (state == RADIOLIB_ERR_PACKET_TOO_LONG) {
// the supplied packet was longer than 32 bytes // the supplied packet was longer than 32 bytes
Serial.println(F("too long!")); Serial.println(F("too long!"));
} else if (state == ERR_ACK_NOT_RECEIVED) { } else if (state == RADIOLIB_ERR_ACK_NOT_RECEIVED) {
// acknowledge from destination module // acknowledge from destination module
// was not received within 15 retries // was not received within 15 retries
Serial.println(F("ACK not received!")); Serial.println(F("ACK not received!"));
} else if (state == ERR_TX_TIMEOUT) { } else if (state == RADIOLIB_ERR_TX_TIMEOUT) {
// timed out while transmitting // timed out while transmitting
Serial.println(F("timeout!")); Serial.println(F("timeout!"));

View file

@ -30,7 +30,7 @@ nRF24 radio = new Module(10, 2, 3);
//nRF24 radio = RadioShield.ModuleA; //nRF24 radio = RadioShield.ModuleA;
// save transmission state between loops // save transmission state between loops
int transmissionState = ERR_NONE; int transmissionState = RADIOLIB_ERR_NONE;
void setup() { void setup() {
Serial.begin(9600); Serial.begin(9600);
@ -38,7 +38,7 @@ void setup() {
// initialize nRF24 with default settings // initialize nRF24 with default settings
Serial.print(F("[nRF24] Initializing ... ")); Serial.print(F("[nRF24] Initializing ... "));
int state = radio.begin(); int state = radio.begin();
if(state == ERR_NONE) { if(state == RADIOLIB_ERR_NONE) {
Serial.println(F("success!")); Serial.println(F("success!"));
} else { } else {
Serial.print(F("failed, code ")); Serial.print(F("failed, code "));
@ -53,7 +53,7 @@ void setup() {
byte addr[] = {0x01, 0x23, 0x45, 0x67, 0x89}; byte addr[] = {0x01, 0x23, 0x45, 0x67, 0x89};
Serial.print(F("[nRF24] Setting transmit pipe ... ")); Serial.print(F("[nRF24] Setting transmit pipe ... "));
state = radio.setTransmitPipe(addr); state = radio.setTransmitPipe(addr);
if(state == ERR_NONE) { if(state == RADIOLIB_ERR_NONE) {
Serial.println(F("success!")); Serial.println(F("success!"));
} else { } else {
Serial.print(F("failed, code ")); Serial.print(F("failed, code "));
@ -110,7 +110,7 @@ void loop() {
// reset flag // reset flag
transmittedFlag = false; transmittedFlag = false;
if (transmissionState == ERR_NONE) { if (transmissionState == RADIOLIB_ERR_NONE) {
// packet was successfully sent // packet was successfully sent
Serial.println(F("transmission finished!")); Serial.println(F("transmission finished!"));

View file

@ -1,30 +1,34 @@
#include "nRF24.h" #include "nRF24.h"
#if !defined(RADIOLIB_EXCLUDE_NRF24) #if !defined(RADIOLIB_EXCLUDE_NRF24)
nRF24::nRF24(Module* mod) : PhysicalLayer(NRF24_FREQUENCY_STEP_SIZE, NRF24_MAX_PACKET_LENGTH) { nRF24::nRF24(Module* mod) : PhysicalLayer(RADIOLIB_NRF24_FREQUENCY_STEP_SIZE, RADIOLIB_NRF24_MAX_PACKET_LENGTH) {
_mod = mod; _mod = mod;
} }
Module* nRF24::getMod() {
return(_mod);
}
int16_t nRF24::begin(int16_t freq, int16_t dataRate, int8_t power, uint8_t addrWidth) { int16_t nRF24::begin(int16_t freq, int16_t dataRate, int8_t power, uint8_t addrWidth) {
// set module properties // set module properties
_mod->SPIreadCommand = NRF24_CMD_READ; _mod->SPIreadCommand = RADIOLIB_NRF24_CMD_READ;
_mod->SPIwriteCommand = NRF24_CMD_WRITE; _mod->SPIwriteCommand = RADIOLIB_NRF24_CMD_WRITE;
_mod->init(RADIOLIB_USE_SPI); _mod->init();
Module::pinMode(_mod->getIrq(), INPUT); _mod->pinMode(_mod->getIrq(), INPUT);
// set pin mode on RST (connected to nRF24 CE pin) // set pin mode on RST (connected to nRF24 CE pin)
Module::pinMode(_mod->getRst(), OUTPUT); _mod->pinMode(_mod->getRst(), OUTPUT);
Module::digitalWrite(_mod->getRst(), LOW); _mod->digitalWrite(_mod->getRst(), LOW);
// wait for minimum power-on reset duration // wait for minimum power-on reset duration
Module::delay(100); _mod->delay(100);
// check SPI connection // check SPI connection
int16_t val = _mod->SPIgetRegValue(NRF24_REG_SETUP_AW); int16_t val = _mod->SPIgetRegValue(RADIOLIB_NRF24_REG_SETUP_AW);
if(!((val >= 0) && (val <= 3))) { if(!((val >= 0) && (val <= 3))) {
RADIOLIB_DEBUG_PRINTLN(F("No nRF24 found!")); RADIOLIB_DEBUG_PRINTLN(F("No nRF24 found!"));
_mod->term(RADIOLIB_USE_SPI); _mod->term();
return(ERR_CHIP_NOT_FOUND); return(RADIOLIB_ERR_CHIP_NOT_FOUND);
} }
RADIOLIB_DEBUG_PRINTLN(F("M\tnRF24")); RADIOLIB_DEBUG_PRINTLN(F("M\tnRF24"));
@ -64,17 +68,17 @@ int16_t nRF24::begin(int16_t freq, int16_t dataRate, int8_t power, uint8_t addrW
} }
int16_t nRF24::sleep() { int16_t nRF24::sleep() {
return(_mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_POWER_DOWN, 1, 1)); return(_mod->SPIsetRegValue(RADIOLIB_NRF24_REG_CONFIG, RADIOLIB_NRF24_POWER_DOWN, 1, 1));
} }
int16_t nRF24::standby() { int16_t nRF24::standby() {
// make sure carrier output is disabled // make sure carrier output is disabled
_mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_CONT_WAVE_OFF, 7, 7); _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_RF_SETUP, RADIOLIB_NRF24_CONT_WAVE_OFF, 7, 7);
_mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_PLL_LOCK_OFF, 4, 4); _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_RF_SETUP, RADIOLIB_NRF24_PLL_LOCK_OFF, 4, 4);
Module::digitalWrite(_mod->getRst(), LOW); _mod->digitalWrite(_mod->getRst(), LOW);
// use standby-1 mode // use standby-1 mode
return(_mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_POWER_UP, 1, 1)); return(_mod->SPIsetRegValue(RADIOLIB_NRF24_REG_CONFIG, RADIOLIB_NRF24_POWER_UP, 1, 1));
} }
int16_t nRF24::transmit(uint8_t* data, size_t len, uint8_t addr) { int16_t nRF24::transmit(uint8_t* data, size_t len, uint8_t addr) {
@ -83,22 +87,22 @@ int16_t nRF24::transmit(uint8_t* data, size_t len, uint8_t addr) {
RADIOLIB_ASSERT(state); RADIOLIB_ASSERT(state);
// wait until transmission is finished // wait until transmission is finished
uint32_t start = Module::micros(); uint32_t start = _mod->micros();
while(Module::digitalRead(_mod->getIrq())) { while(_mod->digitalRead(_mod->getIrq())) {
Module::yield(); _mod->yield();
// check maximum number of retransmits // check maximum number of retransmits
if(getStatus(NRF24_MAX_RT)) { if(getStatus(RADIOLIB_NRF24_MAX_RT)) {
standby(); standby();
clearIRQ(); clearIRQ();
return(ERR_ACK_NOT_RECEIVED); return(RADIOLIB_ERR_ACK_NOT_RECEIVED);
} }
// check timeout: 15 retries * 4ms (max Tx time as per datasheet) // check timeout: 15 retries * 4ms (max Tx time as per datasheet)
if(Module::micros() - start >= 60000) { if(_mod->micros() - start >= 60000) {
standby(); standby();
clearIRQ(); clearIRQ();
return(ERR_TX_TIMEOUT); return(RADIOLIB_ERR_TX_TIMEOUT);
} }
} }
@ -114,15 +118,15 @@ int16_t nRF24::receive(uint8_t* data, size_t len) {
RADIOLIB_ASSERT(state); RADIOLIB_ASSERT(state);
// wait for Rx_DataReady or timeout // wait for Rx_DataReady or timeout
uint32_t start = Module::micros(); uint32_t start = _mod->micros();
while(Module::digitalRead(_mod->getIrq())) { while(_mod->digitalRead(_mod->getIrq())) {
Module::yield(); _mod->yield();
// check timeout: 15 retries * 4ms (max Tx time as per datasheet) // check timeout: 15 retries * 4ms (max Tx time as per datasheet)
if(Module::micros() - start >= 60000) { if(_mod->micros() - start >= 60000) {
standby(); standby();
clearIRQ(); clearIRQ();
return(ERR_RX_TIMEOUT); return(RADIOLIB_ERR_RX_TIMEOUT);
} }
} }
@ -134,25 +138,25 @@ int16_t nRF24::transmitDirect(uint32_t frf) {
// set raw frequency value // set raw frequency value
if(frf != 0) { if(frf != 0) {
uint8_t freqRaw = frf - 2400; uint8_t freqRaw = frf - 2400;
_mod->SPIwriteRegister(NRF24_REG_RF_CH, freqRaw & 0b01111111); _mod->SPIwriteRegister(RADIOLIB_NRF24_REG_RF_CH, freqRaw & 0b01111111);
} }
// output carrier // output carrier
int16_t state = _mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_PTX, 0, 0); int16_t state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_CONFIG, RADIOLIB_NRF24_PTX, 0, 0);
state |= _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_CONT_WAVE_ON, 7, 7); state |= _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_RF_SETUP, RADIOLIB_NRF24_CONT_WAVE_ON, 7, 7);
state |= _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_PLL_LOCK_ON, 4, 4); state |= _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_RF_SETUP, RADIOLIB_NRF24_PLL_LOCK_ON, 4, 4);
Module::digitalWrite(_mod->getRst(), HIGH); _mod->digitalWrite(_mod->getRst(), HIGH);
return(state); return(state);
} }
int16_t nRF24::receiveDirect() { int16_t nRF24::receiveDirect() {
// nRF24 is unable to directly output demodulated data // nRF24 is unable to directly output demodulated data
// this method is implemented only for PhysicalLayer compatibility // this method is implemented only for PhysicalLayer compatibility
return(ERR_NONE); return(RADIOLIB_ERR_NONE);
} }
void nRF24::setIrqAction(void (*func)(void)) { void nRF24::setIrqAction(void (*func)(void)) {
Module::attachInterrupt(RADIOLIB_DIGITAL_PIN_TO_INTERRUPT(_mod->getIrq()), func, FALLING); _mod->attachInterrupt(RADIOLIB_DIGITAL_PIN_TO_INTERRUPT(_mod->getIrq()), func, FALLING);
} }
int16_t nRF24::startTransmit(uint8_t* data, size_t len, uint8_t addr) { int16_t nRF24::startTransmit(uint8_t* data, size_t len, uint8_t addr) {
@ -160,8 +164,8 @@ int16_t nRF24::startTransmit(uint8_t* data, size_t len, uint8_t addr) {
(void)addr; (void)addr;
// check packet length // check packet length
if(len > NRF24_MAX_PACKET_LENGTH) { if(len > RADIOLIB_NRF24_MAX_PACKET_LENGTH) {
return(ERR_PACKET_TOO_LONG); return(RADIOLIB_ERR_PACKET_TOO_LONG);
} }
// set mode to standby // set mode to standby
@ -169,17 +173,17 @@ int16_t nRF24::startTransmit(uint8_t* data, size_t len, uint8_t addr) {
RADIOLIB_ASSERT(state); RADIOLIB_ASSERT(state);
// enable primary Tx mode // enable primary Tx mode
state = _mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_PTX, 0, 0); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_CONFIG, RADIOLIB_NRF24_PTX, 0, 0);
// clear interrupts // clear interrupts
clearIRQ(); clearIRQ();
// enable Tx_DataSent interrupt // enable Tx_DataSent interrupt
state |= _mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_MASK_TX_DS_IRQ_ON, 5, 5); state |= _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_CONFIG, RADIOLIB_NRF24_MASK_TX_DS_IRQ_ON, 5, 5);
RADIOLIB_ASSERT(state); RADIOLIB_ASSERT(state);
// flush Tx FIFO // flush Tx FIFO
SPItransfer(NRF24_CMD_FLUSH_TX); SPItransfer(RADIOLIB_NRF24_CMD_FLUSH_TX);
// fill Tx FIFO // fill Tx FIFO
uint8_t buff[32]; uint8_t buff[32];
@ -188,9 +192,9 @@ int16_t nRF24::startTransmit(uint8_t* data, size_t len, uint8_t addr) {
SPIwriteTxPayload(data, len); SPIwriteTxPayload(data, len);
// CE high to start transmitting // CE high to start transmitting
Module::digitalWrite(_mod->getRst(), HIGH); _mod->digitalWrite(_mod->getRst(), HIGH);
Module::delay(1); _mod->delay(1);
Module::digitalWrite(_mod->getRst(), LOW); _mod->digitalWrite(_mod->getRst(), LOW);
return(state); return(state);
} }
@ -201,22 +205,22 @@ int16_t nRF24::startReceive() {
RADIOLIB_ASSERT(state); RADIOLIB_ASSERT(state);
// enable primary Rx mode // enable primary Rx mode
state = _mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_PRX, 0, 0); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_CONFIG, RADIOLIB_NRF24_PRX, 0, 0);
RADIOLIB_ASSERT(state); RADIOLIB_ASSERT(state);
// enable Rx_DataReady interrupt // enable Rx_DataReady interrupt
clearIRQ(); clearIRQ();
state = _mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_MASK_RX_DR_IRQ_ON, 6, 6); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_CONFIG, RADIOLIB_NRF24_MASK_RX_DR_IRQ_ON, 6, 6);
RADIOLIB_ASSERT(state); RADIOLIB_ASSERT(state);
// flush Rx FIFO // flush Rx FIFO
SPItransfer(NRF24_CMD_FLUSH_RX); SPItransfer(RADIOLIB_NRF24_CMD_FLUSH_RX);
// CE high to start receiving // CE high to start receiving
Module::digitalWrite(_mod->getRst(), HIGH); _mod->digitalWrite(_mod->getRst(), HIGH);
// wait to enter Rx state // wait to enter Rx state
Module::delay(1); _mod->delay(1);
return(state); return(state);
} }
@ -228,7 +232,7 @@ int16_t nRF24::readData(uint8_t* data, size_t len) {
// get packet length // get packet length
size_t length = len; size_t length = len;
if(len == NRF24_MAX_PACKET_LENGTH) { if(len == RADIOLIB_NRF24_MAX_PACKET_LENGTH) {
length = getPacketLength(); length = getPacketLength();
} }
@ -238,15 +242,15 @@ int16_t nRF24::readData(uint8_t* data, size_t len) {
// clear interrupt // clear interrupt
clearIRQ(); clearIRQ();
return(ERR_NONE); return(RADIOLIB_ERR_NONE);
} }
int16_t nRF24::setFrequency(int16_t freq) { int16_t nRF24::setFrequency(int16_t freq) {
RADIOLIB_CHECK_RANGE(freq, 2400, 2525, ERR_INVALID_FREQUENCY); RADIOLIB_CHECK_RANGE(freq, 2400, 2525, RADIOLIB_ERR_INVALID_FREQUENCY);
// set frequency // set frequency
uint8_t freqRaw = freq - 2400; uint8_t freqRaw = freq - 2400;
return(_mod->SPIsetRegValue(NRF24_REG_RF_CH, freqRaw, 6, 0)); return(_mod->SPIsetRegValue(RADIOLIB_NRF24_REG_RF_CH, freqRaw, 6, 0));
} }
int16_t nRF24::setDataRate(int16_t dataRate) { int16_t nRF24::setDataRate(int16_t dataRate) {
@ -256,16 +260,16 @@ int16_t nRF24::setDataRate(int16_t dataRate) {
// set data rate // set data rate
if(dataRate == 250) { if(dataRate == 250) {
state = _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_DR_250_KBPS, 5, 5); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_RF_SETUP, RADIOLIB_NRF24_DR_250_KBPS, 5, 5);
state |= _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_DR_250_KBPS, 3, 3); state |= _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_RF_SETUP, RADIOLIB_NRF24_DR_250_KBPS, 3, 3);
} else if(dataRate == 1000) { } else if(dataRate == 1000) {
state = _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_DR_1_MBPS, 5, 5); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_RF_SETUP, RADIOLIB_NRF24_DR_1_MBPS, 5, 5);
state |= _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_DR_1_MBPS, 3, 3); state |= _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_RF_SETUP, RADIOLIB_NRF24_DR_1_MBPS, 3, 3);
} else if(dataRate == 2000) { } else if(dataRate == 2000) {
state = _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_DR_2_MBPS, 5, 5); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_RF_SETUP, RADIOLIB_NRF24_DR_2_MBPS, 5, 5);
state |= _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, NRF24_DR_2_MBPS, 3, 3); state |= _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_RF_SETUP, RADIOLIB_NRF24_DR_2_MBPS, 3, 3);
} else { } else {
return(ERR_INVALID_DATA_RATE); return(RADIOLIB_ERR_INVALID_DATA_RATE);
} }
return(state); return(state);
@ -280,23 +284,23 @@ int16_t nRF24::setOutputPower(int8_t power) {
uint8_t powerRaw = 0; uint8_t powerRaw = 0;
switch(power) { switch(power) {
case -18: case -18:
powerRaw = NRF24_RF_PWR_18_DBM; powerRaw = RADIOLIB_NRF24_RF_PWR_18_DBM;
break; break;
case -12: case -12:
powerRaw = NRF24_RF_PWR_12_DBM; powerRaw = RADIOLIB_NRF24_RF_PWR_12_DBM;
break; break;
case -6: case -6:
powerRaw = NRF24_RF_PWR_6_DBM; powerRaw = RADIOLIB_NRF24_RF_PWR_6_DBM;
break; break;
case 0: case 0:
powerRaw = NRF24_RF_PWR_0_DBM; powerRaw = RADIOLIB_NRF24_RF_PWR_0_DBM;
break; break;
default: default:
return(ERR_INVALID_OUTPUT_POWER); return(RADIOLIB_ERR_INVALID_OUTPUT_POWER);
} }
// write new register value // write new register value
state = _mod->SPIsetRegValue(NRF24_REG_RF_SETUP, powerRaw, 2, 1); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_RF_SETUP, powerRaw, 2, 1);
return(state); return(state);
} }
@ -310,19 +314,19 @@ int16_t nRF24::setAddressWidth(uint8_t addrWidth) {
case 2: case 2:
// Even if marked as 'Illegal' on the datasheet this will work: // Even if marked as 'Illegal' on the datasheet this will work:
// http://travisgoodspeed.blogspot.com/2011/02/promiscuity-is-nrf24l01s-duty.html // http://travisgoodspeed.blogspot.com/2011/02/promiscuity-is-nrf24l01s-duty.html
state = _mod->SPIsetRegValue(NRF24_REG_SETUP_AW, NRF24_ADDRESS_2_BYTES, 1, 0); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_SETUP_AW, RADIOLIB_NRF24_ADDRESS_2_BYTES, 1, 0);
break; break;
case 3: case 3:
state = _mod->SPIsetRegValue(NRF24_REG_SETUP_AW, NRF24_ADDRESS_3_BYTES, 1, 0); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_SETUP_AW, RADIOLIB_NRF24_ADDRESS_3_BYTES, 1, 0);
break; break;
case 4: case 4:
state = _mod->SPIsetRegValue(NRF24_REG_SETUP_AW, NRF24_ADDRESS_4_BYTES, 1, 0); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_SETUP_AW, RADIOLIB_NRF24_ADDRESS_4_BYTES, 1, 0);
break; break;
case 5: case 5:
state = _mod->SPIsetRegValue(NRF24_REG_SETUP_AW, NRF24_ADDRESS_5_BYTES, 1, 0); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_SETUP_AW, RADIOLIB_NRF24_ADDRESS_5_BYTES, 1, 0);
break; break;
default: default:
return(ERR_INVALID_ADDRESS_WIDTH); return(RADIOLIB_ERR_INVALID_ADDRESS_WIDTH);
} }
// save address width // save address width
@ -337,11 +341,11 @@ int16_t nRF24::setTransmitPipe(uint8_t* addr) {
RADIOLIB_ASSERT(state); RADIOLIB_ASSERT(state);
// set transmit address // set transmit address
_mod->SPIwriteRegisterBurst(NRF24_REG_TX_ADDR, addr, _addrWidth); _mod->SPIwriteRegisterBurst(RADIOLIB_NRF24_REG_TX_ADDR, addr, _addrWidth);
// set Rx pipe 0 address (for ACK) // set Rx pipe 0 address (for ACK)
_mod->SPIwriteRegisterBurst(NRF24_REG_RX_ADDR_P0, addr, _addrWidth); _mod->SPIwriteRegisterBurst(RADIOLIB_NRF24_REG_RX_ADDR_P0, addr, _addrWidth);
state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P0_ON, 0, 0); state |= _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_RXADDR, RADIOLIB_NRF24_P0_ON, 0, 0);
return(state); return(state);
} }
@ -354,15 +358,15 @@ int16_t nRF24::setReceivePipe(uint8_t pipeNum, uint8_t* addr) {
// write full pipe 0 - 1 address and enable the pipe // write full pipe 0 - 1 address and enable the pipe
switch(pipeNum) { switch(pipeNum) {
case 0: case 0:
_mod->SPIwriteRegisterBurst(NRF24_REG_RX_ADDR_P0, addr, _addrWidth); _mod->SPIwriteRegisterBurst(RADIOLIB_NRF24_REG_RX_ADDR_P0, addr, _addrWidth);
state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P0_ON, 0, 0); state |= _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_RXADDR, RADIOLIB_NRF24_P0_ON, 0, 0);
break; break;
case 1: case 1:
_mod->SPIwriteRegisterBurst(NRF24_REG_RX_ADDR_P1, addr, _addrWidth); _mod->SPIwriteRegisterBurst(RADIOLIB_NRF24_REG_RX_ADDR_P1, addr, _addrWidth);
state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P1_ON, 1, 1); state |= _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_RXADDR, RADIOLIB_NRF24_P1_ON, 1, 1);
break; break;
default: default:
return(ERR_INVALID_PIPE_NUMBER); return(RADIOLIB_ERR_INVALID_PIPE_NUMBER);
} }
return(state); return(state);
@ -376,23 +380,23 @@ int16_t nRF24::setReceivePipe(uint8_t pipeNum, uint8_t addrByte) {
// write unique pipe 2 - 5 address and enable the pipe // write unique pipe 2 - 5 address and enable the pipe
switch(pipeNum) { switch(pipeNum) {
case 2: case 2:
state = _mod->SPIsetRegValue(NRF24_REG_RX_ADDR_P2, addrByte); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_RX_ADDR_P2, addrByte);
state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P2_ON, 2, 2); state |= _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_RXADDR, RADIOLIB_NRF24_P2_ON, 2, 2);
break; break;
case 3: case 3:
state = _mod->SPIsetRegValue(NRF24_REG_RX_ADDR_P3, addrByte); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_RX_ADDR_P3, addrByte);
state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P3_ON, 3, 3); state |= _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_RXADDR, RADIOLIB_NRF24_P3_ON, 3, 3);
break; break;
case 4: case 4:
state = _mod->SPIsetRegValue(NRF24_REG_RX_ADDR_P4, addrByte); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_RX_ADDR_P4, addrByte);
state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P4_ON, 4, 4); state |= _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_RXADDR, RADIOLIB_NRF24_P4_ON, 4, 4);
break; break;
case 5: case 5:
state = _mod->SPIsetRegValue(NRF24_REG_RX_ADDR_P5, addrByte); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_RX_ADDR_P5, addrByte);
state |= _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P5_ON, 5, 5); state |= _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_RXADDR, RADIOLIB_NRF24_P5_ON, 5, 5);
break; break;
default: default:
return(ERR_INVALID_PIPE_NUMBER); return(RADIOLIB_ERR_INVALID_PIPE_NUMBER);
} }
return(state); return(state);
@ -405,49 +409,49 @@ int16_t nRF24::disablePipe(uint8_t pipeNum) {
switch(pipeNum) { switch(pipeNum) {
case 0: case 0:
state = _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P0_OFF, 0, 0); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_RXADDR, RADIOLIB_NRF24_P0_OFF, 0, 0);
break; break;
case 1: case 1:
state = _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P1_OFF, 1, 1); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_RXADDR, RADIOLIB_NRF24_P1_OFF, 1, 1);
break; break;
case 2: case 2:
state = _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P2_OFF, 2, 2); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_RXADDR, RADIOLIB_NRF24_P2_OFF, 2, 2);
break; break;
case 3: case 3:
state = _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P3_OFF, 3, 3); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_RXADDR, RADIOLIB_NRF24_P3_OFF, 3, 3);
break; break;
case 4: case 4:
state = _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P4_OFF, 4, 4); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_RXADDR, RADIOLIB_NRF24_P4_OFF, 4, 4);
break; break;
case 5: case 5:
state = _mod->SPIsetRegValue(NRF24_REG_EN_RXADDR, NRF24_P5_OFF, 5, 5); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_RXADDR, RADIOLIB_NRF24_P5_OFF, 5, 5);
break; break;
default: default:
return(ERR_INVALID_PIPE_NUMBER); return(RADIOLIB_ERR_INVALID_PIPE_NUMBER);
} }
return(state); return(state);
} }
int16_t nRF24::getStatus(uint8_t mask) { int16_t nRF24::getStatus(uint8_t mask) {
return(_mod->SPIgetRegValue(NRF24_REG_STATUS) & mask); return(_mod->SPIgetRegValue(RADIOLIB_NRF24_REG_STATUS) & mask);
} }
bool nRF24::isCarrierDetected() { bool nRF24::isCarrierDetected() {
return(_mod->SPIgetRegValue(NRF24_REG_RPD, 0, 0) == 1); return(_mod->SPIgetRegValue(RADIOLIB_NRF24_REG_RPD, 0, 0) == 1);
} }
int16_t nRF24::setFrequencyDeviation(float freqDev) { int16_t nRF24::setFrequencyDeviation(float freqDev) {
// nRF24 is unable to set frequency deviation // nRF24 is unable to set frequency deviation
// this method is implemented only for PhysicalLayer compatibility // this method is implemented only for PhysicalLayer compatibility
(void)freqDev; (void)freqDev;
return(ERR_NONE); return(RADIOLIB_ERR_NONE);
} }
size_t nRF24::getPacketLength(bool update) { size_t nRF24::getPacketLength(bool update) {
(void)update; (void)update;
uint8_t length = 0; uint8_t length = 0;
SPItransfer(NRF24_CMD_READ_RX_PAYLOAD_WIDTH, false, NULL, &length, 1); SPItransfer(RADIOLIB_NRF24_CMD_READ_RX_PAYLOAD_WIDTH, false, NULL, &length, 1);
return((size_t)length); return((size_t)length);
} }
@ -459,35 +463,35 @@ int16_t nRF24::setCrcFiltering(bool crcOn) {
} }
// Disable CRC // Disable CRC
return _mod->SPIsetRegValue(NRF24_REG_CONFIG, (crcOn ? NRF24_CRC_ON : NRF24_CRC_OFF), 3, 3); return _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_CONFIG, (crcOn ? RADIOLIB_NRF24_CRC_ON : RADIOLIB_NRF24_CRC_OFF), 3, 3);
} }
int16_t nRF24::setAutoAck(bool autoAckOn){ int16_t nRF24::setAutoAck(bool autoAckOn){
return _mod->SPIsetRegValue(NRF24_REG_EN_AA, (autoAckOn ? NRF24_AA_ALL_ON : NRF24_AA_ALL_OFF), 5, 0); return _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_AA, (autoAckOn ? RADIOLIB_NRF24_AA_ALL_ON : RADIOLIB_NRF24_AA_ALL_OFF), 5, 0);
} }
int16_t nRF24::setAutoAck(uint8_t pipeNum, bool autoAckOn){ int16_t nRF24::setAutoAck(uint8_t pipeNum, bool autoAckOn){
switch(pipeNum) { switch(pipeNum) {
case 0: case 0:
return _mod->SPIsetRegValue(NRF24_REG_EN_AA, (autoAckOn ? NRF24_AA_P0_ON : NRF24_AA_P0_OFF), 0, 0); return _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_AA, (autoAckOn ? RADIOLIB_NRF24_AA_P0_ON : RADIOLIB_NRF24_AA_P0_OFF), 0, 0);
break; break;
case 1: case 1:
return _mod->SPIsetRegValue(NRF24_REG_EN_AA, (autoAckOn ? NRF24_AA_P1_ON : NRF24_AA_P1_OFF), 1, 1); return _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_AA, (autoAckOn ? RADIOLIB_NRF24_AA_P1_ON : RADIOLIB_NRF24_AA_P1_OFF), 1, 1);
break; break;
case 2: case 2:
return _mod->SPIsetRegValue(NRF24_REG_EN_AA, (autoAckOn ? NRF24_AA_P2_ON : NRF24_AA_P2_OFF), 2, 2); return _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_AA, (autoAckOn ? RADIOLIB_NRF24_AA_P2_ON : RADIOLIB_NRF24_AA_P2_OFF), 2, 2);
break; break;
case 3: case 3:
return _mod->SPIsetRegValue(NRF24_REG_EN_AA, (autoAckOn ? NRF24_AA_P3_ON : NRF24_AA_P3_OFF), 3, 3); return _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_AA, (autoAckOn ? RADIOLIB_NRF24_AA_P3_ON : RADIOLIB_NRF24_AA_P3_OFF), 3, 3);
break; break;
case 4: case 4:
return _mod->SPIsetRegValue(NRF24_REG_EN_AA, (autoAckOn ? NRF24_AA_P4_ON : NRF24_AA_P4_OFF), 4, 4); return _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_AA, (autoAckOn ? RADIOLIB_NRF24_AA_P4_ON : RADIOLIB_NRF24_AA_P4_OFF), 4, 4);
break; break;
case 5: case 5:
return _mod->SPIsetRegValue(NRF24_REG_EN_AA, (autoAckOn ? NRF24_AA_P5_ON : NRF24_AA_P5_OFF), 5, 5); return _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_EN_AA, (autoAckOn ? RADIOLIB_NRF24_AA_P5_ON : RADIOLIB_NRF24_AA_P5_OFF), 5, 5);
break; break;
default: default:
return (ERR_INVALID_PIPE_NUMBER); return (RADIOLIB_ERR_INVALID_PIPE_NUMBER);
} }
} }
@ -495,14 +499,14 @@ int16_t nRF24::setDataShaping(uint8_t sh) {
// nRF24 is unable to set data shaping // nRF24 is unable to set data shaping
// this method is implemented only for PhysicalLayer compatibility // this method is implemented only for PhysicalLayer compatibility
(void)sh; (void)sh;
return(ERR_NONE); return(RADIOLIB_ERR_NONE);
} }
int16_t nRF24::setEncoding(uint8_t encoding) { int16_t nRF24::setEncoding(uint8_t encoding) {
// nRF24 is unable to set encoding // nRF24 is unable to set encoding
// this method is implemented only for PhysicalLayer compatibility // this method is implemented only for PhysicalLayer compatibility
(void)encoding; (void)encoding;
return(ERR_NONE); return(RADIOLIB_ERR_NONE);
} }
uint8_t nRF24::randomByte() { uint8_t nRF24::randomByte() {
@ -525,79 +529,75 @@ void nRF24::readBit(RADIOLIB_PIN_TYPE pin) {
void nRF24::clearIRQ() { void nRF24::clearIRQ() {
// clear status bits // clear status bits
_mod->SPIsetRegValue(NRF24_REG_STATUS, NRF24_RX_DR | NRF24_TX_DS | NRF24_MAX_RT, 6, 4); _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_STATUS, RADIOLIB_NRF24_RX_DR | RADIOLIB_NRF24_TX_DS | RADIOLIB_NRF24_MAX_RT, 6, 4);
// disable interrupts // disable interrupts
_mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_MASK_RX_DR_IRQ_OFF | NRF24_MASK_TX_DS_IRQ_OFF | NRF24_MASK_MAX_RT_IRQ_OFF, 6, 4); _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_CONFIG, RADIOLIB_NRF24_MASK_RX_DR_IRQ_OFF | RADIOLIB_NRF24_MASK_TX_DS_IRQ_OFF | RADIOLIB_NRF24_MASK_MAX_RT_IRQ_OFF, 6, 4);
} }
int16_t nRF24::config() { int16_t nRF24::config() {
// enable 16-bit CRC // enable 16-bit CRC
int16_t state = _mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_CRC_ON | NRF24_CRC_16, 3, 2); int16_t state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_CONFIG, RADIOLIB_NRF24_CRC_ON | RADIOLIB_NRF24_CRC_16, 3, 2);
RADIOLIB_ASSERT(state); RADIOLIB_ASSERT(state);
// set 15 retries and delay 1500 (5*250) us // set 15 retries and delay 1500 (5*250) us
_mod->SPIsetRegValue(NRF24_REG_SETUP_RETR, (5 << 4) | 5); _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_SETUP_RETR, (5 << 4) | 5);
// set features: dynamic payload on, payload with ACK packets off, dynamic ACK off // set features: dynamic payload on, payload with ACK packets off, dynamic ACK off
state = _mod->SPIsetRegValue(NRF24_REG_FEATURE, NRF24_DPL_ON | NRF24_ACK_PAY_OFF | NRF24_DYN_ACK_OFF, 2, 0); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_FEATURE, RADIOLIB_NRF24_DPL_ON | RADIOLIB_NRF24_ACK_PAY_OFF | RADIOLIB_NRF24_DYN_ACK_OFF, 2, 0);
RADIOLIB_ASSERT(state); RADIOLIB_ASSERT(state);
// enable dynamic payloads // enable dynamic payloads
state = _mod->SPIsetRegValue(NRF24_REG_DYNPD, NRF24_DPL_ALL_ON, 5, 0); state = _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_DYNPD, RADIOLIB_NRF24_DPL_ALL_ON, 5, 0);
RADIOLIB_ASSERT(state); RADIOLIB_ASSERT(state);
// reset IRQ // reset IRQ
clearIRQ(); clearIRQ();
// clear status // clear status
_mod->SPIsetRegValue(NRF24_REG_STATUS, NRF24_RX_DR | NRF24_TX_DS | NRF24_MAX_RT, 6, 4); _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_STATUS, RADIOLIB_NRF24_RX_DR | RADIOLIB_NRF24_TX_DS | RADIOLIB_NRF24_MAX_RT, 6, 4);
// flush FIFOs // flush FIFOs
SPItransfer(NRF24_CMD_FLUSH_TX); SPItransfer(RADIOLIB_NRF24_CMD_FLUSH_TX);
SPItransfer(NRF24_CMD_FLUSH_RX); SPItransfer(RADIOLIB_NRF24_CMD_FLUSH_RX);
// power up // power up
_mod->SPIsetRegValue(NRF24_REG_CONFIG, NRF24_POWER_UP, 1, 1); _mod->SPIsetRegValue(RADIOLIB_NRF24_REG_CONFIG, RADIOLIB_NRF24_POWER_UP, 1, 1);
Module::delay(5); _mod->delay(5);
return(state); return(state);
} }
void nRF24::SPIreadRxPayload(uint8_t* data, uint8_t numBytes) { void nRF24::SPIreadRxPayload(uint8_t* data, uint8_t numBytes) {
SPItransfer(NRF24_CMD_READ_RX_PAYLOAD, false, NULL, data, numBytes); SPItransfer(RADIOLIB_NRF24_CMD_READ_RX_PAYLOAD, false, NULL, data, numBytes);
} }
void nRF24::SPIwriteTxPayload(uint8_t* data, uint8_t numBytes) { void nRF24::SPIwriteTxPayload(uint8_t* data, uint8_t numBytes) {
SPItransfer(NRF24_CMD_WRITE_TX_PAYLOAD, true, data, NULL, numBytes); SPItransfer(RADIOLIB_NRF24_CMD_WRITE_TX_PAYLOAD, true, data, NULL, numBytes);
} }
void nRF24::SPItransfer(uint8_t cmd, bool write, uint8_t* dataOut, uint8_t* dataIn, uint8_t numBytes) { void nRF24::SPItransfer(uint8_t cmd, bool write, uint8_t* dataOut, uint8_t* dataIn, uint8_t numBytes) {
// get pointer to used SPI interface and the settings
SPIClass* spi = _mod->getSpi();
SPISettings spiSettings = _mod->getSpiSettings();
// start transfer // start transfer
Module::digitalWrite(_mod->getCs(), LOW); _mod->digitalWrite(_mod->getCs(), LOW);
spi->beginTransaction(spiSettings); _mod->SPIbeginTransaction();
// send command // send command
spi->transfer(cmd); _mod->SPItransfer(cmd);
// send data // send data
if(write) { if(write) {
for(uint8_t i = 0; i < numBytes; i++) { for(uint8_t i = 0; i < numBytes; i++) {
spi->transfer(dataOut[i]); _mod->SPItransfer(dataOut[i]);
} }
} else { } else {
for(uint8_t i = 0; i < numBytes; i++) { for(uint8_t i = 0; i < numBytes; i++) {
dataIn[i] = spi->transfer(0x00); dataIn[i] = _mod->SPItransfer(0x00);
} }
} }
// stop transfer // stop transfer
spi->endTransaction(); _mod->SPIendTransaction();
Module::digitalWrite(_mod->getCs(), HIGH); _mod->digitalWrite(_mod->getCs(), HIGH);
} }
#endif #endif

View file

@ -7,169 +7,169 @@
#include "../../protocols/PhysicalLayer/PhysicalLayer.h" #include "../../protocols/PhysicalLayer/PhysicalLayer.h"
// nRF24 physical layer properties // nRF24 physical layer properties
#define NRF24_FREQUENCY_STEP_SIZE 1000000.0 #define RADIOLIB_NRF24_FREQUENCY_STEP_SIZE 1000000.0
#define NRF24_MAX_PACKET_LENGTH 32 #define RADIOLIB_NRF24_MAX_PACKET_LENGTH 32
// nRF24 SPI commands // nRF24 SPI commands
#define NRF24_CMD_READ 0b00000000 #define RADIOLIB_NRF24_CMD_READ 0b00000000
#define NRF24_CMD_WRITE 0b00100000 #define RADIOLIB_NRF24_CMD_WRITE 0b00100000
#define NRF24_CMD_READ_RX_PAYLOAD 0b01100001 #define RADIOLIB_NRF24_CMD_READ_RX_PAYLOAD 0b01100001
#define NRF24_CMD_WRITE_TX_PAYLOAD 0b10100000 #define RADIOLIB_NRF24_CMD_WRITE_TX_PAYLOAD 0b10100000
#define NRF24_CMD_FLUSH_TX 0b11100001 #define RADIOLIB_NRF24_CMD_FLUSH_TX 0b11100001
#define NRF24_CMD_FLUSH_RX 0b11100010 #define RADIOLIB_NRF24_CMD_FLUSH_RX 0b11100010
#define NRF24_CMD_REUSE_TX_PAXLOAD 0b11100011 #define RADIOLIB_NRF24_CMD_REUSE_TX_PAXLOAD 0b11100011
#define NRF24_CMD_READ_RX_PAYLOAD_WIDTH 0b01100000 #define RADIOLIB_NRF24_CMD_READ_RX_PAYLOAD_WIDTH 0b01100000
#define NRF24_CMD_WRITE_ACK_PAYLOAD 0b10101000 #define RADIOLIB_NRF24_CMD_WRITE_ACK_PAYLOAD 0b10101000
#define NRF24_CMD_WRITE_TX_PAYLOAD_NOACK 0b10110000 #define RADIOLIB_NRF24_CMD_WRITE_TX_PAYLOAD_NOACK 0b10110000
#define NRF24_CMD_NOP 0b11111111 #define RADIOLIB_NRF24_CMD_NOP 0b11111111
// nRF24 register map // nRF24 register map
#define NRF24_REG_CONFIG 0x00 #define RADIOLIB_NRF24_REG_CONFIG 0x00
#define NRF24_REG_EN_AA 0x01 #define RADIOLIB_NRF24_REG_EN_AA 0x01
#define NRF24_REG_EN_RXADDR 0x02 #define RADIOLIB_NRF24_REG_EN_RXADDR 0x02
#define NRF24_REG_SETUP_AW 0x03 #define RADIOLIB_NRF24_REG_SETUP_AW 0x03
#define NRF24_REG_SETUP_RETR 0x04 #define RADIOLIB_NRF24_REG_SETUP_RETR 0x04
#define NRF24_REG_RF_CH 0x05 #define RADIOLIB_NRF24_REG_RF_CH 0x05
#define NRF24_REG_RF_SETUP 0x06 #define RADIOLIB_NRF24_REG_RF_SETUP 0x06
#define NRF24_REG_STATUS 0x07 #define RADIOLIB_NRF24_REG_STATUS 0x07
#define NRF24_REG_OBSERVE_TX 0x08 #define RADIOLIB_NRF24_REG_OBSERVE_TX 0x08
#define NRF24_REG_RPD 0x09 #define RADIOLIB_NRF24_REG_RPD 0x09
#define NRF24_REG_RX_ADDR_P0 0x0A #define RADIOLIB_NRF24_REG_RX_ADDR_P0 0x0A
#define NRF24_REG_RX_ADDR_P1 0x0B #define RADIOLIB_NRF24_REG_RX_ADDR_P1 0x0B
#define NRF24_REG_RX_ADDR_P2 0x0C #define RADIOLIB_NRF24_REG_RX_ADDR_P2 0x0C
#define NRF24_REG_RX_ADDR_P3 0x0D #define RADIOLIB_NRF24_REG_RX_ADDR_P3 0x0D
#define NRF24_REG_RX_ADDR_P4 0x0E #define RADIOLIB_NRF24_REG_RX_ADDR_P4 0x0E
#define NRF24_REG_RX_ADDR_P5 0x0F #define RADIOLIB_NRF24_REG_RX_ADDR_P5 0x0F
#define NRF24_REG_TX_ADDR 0x10 #define RADIOLIB_NRF24_REG_TX_ADDR 0x10
#define NRF24_REG_RX_PW_P0 0x11 #define RADIOLIB_NRF24_REG_RX_PW_P0 0x11
#define NRF24_REG_RX_PW_P1 0x12 #define RADIOLIB_NRF24_REG_RX_PW_P1 0x12
#define NRF24_REG_RX_PW_P2 0x13 #define RADIOLIB_NRF24_REG_RX_PW_P2 0x13
#define NRF24_REG_RX_PW_P3 0x14 #define RADIOLIB_NRF24_REG_RX_PW_P3 0x14
#define NRF24_REG_RX_PW_P4 0x15 #define RADIOLIB_NRF24_REG_RX_PW_P4 0x15
#define NRF24_REG_RX_PW_P5 0x16 #define RADIOLIB_NRF24_REG_RX_PW_P5 0x16
#define NRF24_REG_FIFO_STATUS 0x17 #define RADIOLIB_NRF24_REG_FIFO_STATUS 0x17
#define NRF24_REG_DYNPD 0x1C #define RADIOLIB_NRF24_REG_DYNPD 0x1C
#define NRF24_REG_FEATURE 0x1D #define RADIOLIB_NRF24_REG_FEATURE 0x1D
// NRF24_REG_CONFIG MSB LSB DESCRIPTION // NRF24_REG_CONFIG MSB LSB DESCRIPTION
#define NRF24_MASK_RX_DR_IRQ_OFF 0b01000000 // 6 6 RX_DR will not be reflected on IRQ pin #define RADIOLIB_NRF24_MASK_RX_DR_IRQ_OFF 0b01000000 // 6 6 RX_DR will not be reflected on IRQ pin
#define NRF24_MASK_RX_DR_IRQ_ON 0b00000000 // 6 6 RX_DR will be reflected on IRQ pin as active low (default) #define RADIOLIB_NRF24_MASK_RX_DR_IRQ_ON 0b00000000 // 6 6 RX_DR will be reflected on IRQ pin as active low (default)
#define NRF24_MASK_TX_DS_IRQ_OFF 0b00100000 // 5 5 TX_DS will not be reflected on IRQ pin #define RADIOLIB_NRF24_MASK_TX_DS_IRQ_OFF 0b00100000 // 5 5 TX_DS will not be reflected on IRQ pin
#define NRF24_MASK_TX_DS_IRQ_ON 0b00000000 // 5 5 TX_DS will be reflected on IRQ pin as active low (default) #define RADIOLIB_NRF24_MASK_TX_DS_IRQ_ON 0b00000000 // 5 5 TX_DS will be reflected on IRQ pin as active low (default)
#define NRF24_MASK_MAX_RT_IRQ_OFF 0b00010000 // 4 4 MAX_RT will not be reflected on IRQ pin #define RADIOLIB_NRF24_MASK_MAX_RT_IRQ_OFF 0b00010000 // 4 4 MAX_RT will not be reflected on IRQ pin
#define NRF24_MASK_MAX_RT_IRQ_ON 0b00000000 // 4 4 MAX_RT will be reflected on IRQ pin as active low (default) #define RADIOLIB_NRF24_MASK_MAX_RT_IRQ_ON 0b00000000 // 4 4 MAX_RT will be reflected on IRQ pin as active low (default)
#define NRF24_CRC_OFF 0b00000000 // 3 3 CRC calculation: disabled #define RADIOLIB_NRF24_CRC_OFF 0b00000000 // 3 3 CRC calculation: disabled
#define NRF24_CRC_ON 0b00001000 // 3 3 enabled (default) #define RADIOLIB_NRF24_CRC_ON 0b00001000 // 3 3 enabled (default)
#define NRF24_CRC_8 0b00000000 // 2 2 CRC scheme: CRC8 (default) #define RADIOLIB_NRF24_CRC_8 0b00000000 // 2 2 CRC scheme: CRC8 (default)
#define NRF24_CRC_16 0b00000100 // 2 2 CRC16 #define RADIOLIB_NRF24_CRC_16 0b00000100 // 2 2 CRC16
#define NRF24_POWER_UP 0b00000010 // 1 1 power up #define RADIOLIB_NRF24_POWER_UP 0b00000010 // 1 1 power up
#define NRF24_POWER_DOWN 0b00000000 // 1 1 power down #define RADIOLIB_NRF24_POWER_DOWN 0b00000000 // 1 1 power down
#define NRF24_PTX 0b00000000 // 0 0 enable primary Tx #define RADIOLIB_NRF24_PTX 0b00000000 // 0 0 enable primary Tx
#define NRF24_PRX 0b00000001 // 0 0 enable primary Rx #define RADIOLIB_NRF24_PRX 0b00000001 // 0 0 enable primary Rx
// NRF24_REG_EN_AA // NRF24_REG_EN_AA
#define NRF24_AA_ALL_OFF 0b00000000 // 5 0 auto-ACK on all pipes: disabled #define RADIOLIB_NRF24_AA_ALL_OFF 0b00000000 // 5 0 auto-ACK on all pipes: disabled
#define NRF24_AA_ALL_ON 0b00111111 // 5 0 enabled (default) #define RADIOLIB_NRF24_AA_ALL_ON 0b00111111 // 5 0 enabled (default)
#define NRF24_AA_P5_OFF 0b00000000 // 5 5 auto-ACK on pipe 5: disabled #define RADIOLIB_NRF24_AA_P5_OFF 0b00000000 // 5 5 auto-ACK on pipe 5: disabled
#define NRF24_AA_P5_ON 0b00100000 // 5 5 enabled (default) #define RADIOLIB_NRF24_AA_P5_ON 0b00100000 // 5 5 enabled (default)
#define NRF24_AA_P4_OFF 0b00000000 // 4 4 auto-ACK on pipe 4: disabled #define RADIOLIB_NRF24_AA_P4_OFF 0b00000000 // 4 4 auto-ACK on pipe 4: disabled
#define NRF24_AA_P4_ON 0b00010000 // 4 4 enabled (default) #define RADIOLIB_NRF24_AA_P4_ON 0b00010000 // 4 4 enabled (default)
#define NRF24_AA_P3_OFF 0b00000000 // 3 3 auto-ACK on pipe 3: disabled #define RADIOLIB_NRF24_AA_P3_OFF 0b00000000 // 3 3 auto-ACK on pipe 3: disabled
#define NRF24_AA_P3_ON 0b00001000 // 3 3 enabled (default) #define RADIOLIB_NRF24_AA_P3_ON 0b00001000 // 3 3 enabled (default)
#define NRF24_AA_P2_OFF 0b00000000 // 2 2 auto-ACK on pipe 2: disabled #define RADIOLIB_NRF24_AA_P2_OFF 0b00000000 // 2 2 auto-ACK on pipe 2: disabled
#define NRF24_AA_P2_ON 0b00000100 // 2 2 enabled (default) #define RADIOLIB_NRF24_AA_P2_ON 0b00000100 // 2 2 enabled (default)
#define NRF24_AA_P1_OFF 0b00000000 // 1 1 auto-ACK on pipe 1: disabled #define RADIOLIB_NRF24_AA_P1_OFF 0b00000000 // 1 1 auto-ACK on pipe 1: disabled
#define NRF24_AA_P1_ON 0b00000010 // 1 1 enabled (default) #define RADIOLIB_NRF24_AA_P1_ON 0b00000010 // 1 1 enabled (default)
#define NRF24_AA_P0_OFF 0b00000000 // 0 0 auto-ACK on pipe 0: disabled #define RADIOLIB_NRF24_AA_P0_OFF 0b00000000 // 0 0 auto-ACK on pipe 0: disabled
#define NRF24_AA_P0_ON 0b00000001 // 0 0 enabled (default) #define RADIOLIB_NRF24_AA_P0_ON 0b00000001 // 0 0 enabled (default)
// NRF24_REG_EN_RXADDR // NRF24_REG_EN_RXADDR
#define NRF24_P5_OFF 0b00000000 // 5 5 receive pipe 5: disabled (default) #define RADIOLIB_NRF24_P5_OFF 0b00000000 // 5 5 receive pipe 5: disabled (default)
#define NRF24_P5_ON 0b00100000 // 5 5 enabled #define RADIOLIB_NRF24_P5_ON 0b00100000 // 5 5 enabled
#define NRF24_P4_OFF 0b00000000 // 4 4 receive pipe 4: disabled (default) #define RADIOLIB_NRF24_P4_OFF 0b00000000 // 4 4 receive pipe 4: disabled (default)
#define NRF24_P4_ON 0b00010000 // 4 4 enabled #define RADIOLIB_NRF24_P4_ON 0b00010000 // 4 4 enabled
#define NRF24_P3_OFF 0b00000000 // 3 3 receive pipe 3: disabled (default) #define RADIOLIB_NRF24_P3_OFF 0b00000000 // 3 3 receive pipe 3: disabled (default)
#define NRF24_P3_ON 0b00001000 // 3 3 enabled #define RADIOLIB_NRF24_P3_ON 0b00001000 // 3 3 enabled
#define NRF24_P2_OFF 0b00000000 // 2 2 receive pipe 2: disabled (default) #define RADIOLIB_NRF24_P2_OFF 0b00000000 // 2 2 receive pipe 2: disabled (default)
#define NRF24_P2_ON 0b00000100 // 2 2 enabled #define RADIOLIB_NRF24_P2_ON 0b00000100 // 2 2 enabled
#define NRF24_P1_OFF 0b00000000 // 1 1 receive pipe 1: disabled #define RADIOLIB_NRF24_P1_OFF 0b00000000 // 1 1 receive pipe 1: disabled
#define NRF24_P1_ON 0b00000010 // 1 1 enabled (default) #define RADIOLIB_NRF24_P1_ON 0b00000010 // 1 1 enabled (default)
#define NRF24_P0_OFF 0b00000000 // 0 0 receive pipe 0: disabled #define RADIOLIB_NRF24_P0_OFF 0b00000000 // 0 0 receive pipe 0: disabled
#define NRF24_P0_ON 0b00000001 // 0 0 enabled (default) #define RADIOLIB_NRF24_P0_ON 0b00000001 // 0 0 enabled (default)
// NRF24_REG_SETUP_AW // NRF24_REG_SETUP_AW
#define NRF24_ADDRESS_2_BYTES 0b00000000 // 1 0 address width: 2 bytes #define RADIOLIB_NRF24_ADDRESS_2_BYTES 0b00000000 // 1 0 address width: 2 bytes
#define NRF24_ADDRESS_3_BYTES 0b00000001 // 1 0 3 bytes #define RADIOLIB_NRF24_ADDRESS_3_BYTES 0b00000001 // 1 0 3 bytes
#define NRF24_ADDRESS_4_BYTES 0b00000010 // 1 0 4 bytes #define RADIOLIB_NRF24_ADDRESS_4_BYTES 0b00000010 // 1 0 4 bytes
#define NRF24_ADDRESS_5_BYTES 0b00000011 // 1 0 5 bytes (default) #define RADIOLIB_NRF24_ADDRESS_5_BYTES 0b00000011 // 1 0 5 bytes (default)
// NRF24_REG_SETUP_RETR // NRF24_REG_SETUP_RETR
#define NRF24_ARD 0b00000000 // 7 4 auto retransmit delay: t[us] = (NRF24_ARD + 1) * 250 us #define RADIOLIB_NRF24_ARD 0b00000000 // 7 4 auto retransmit delay: t[us] = (NRF24_ARD + 1) * 250 us
#define NRF24_ARC_OFF 0b00000000 // 3 0 auto retransmit count: auto retransmit disabled #define RADIOLIB_NRF24_ARC_OFF 0b00000000 // 3 0 auto retransmit count: auto retransmit disabled
#define NRF24_ARC 0b00000011 // 3 0 up to 3 retransmits on AA fail (default) #define RADIOLIB_NRF24_ARC 0b00000011 // 3 0 up to 3 retransmits on AA fail (default)
// NRF24_REG_RF_CH // NRF24_REG_RF_CH
#define NRF24_RF_CH 0b00000010 // 6 0 RF channel: f_CH[MHz] = 2400 MHz + NRF24_RF_CH #define RADIOLIB_NRF24_RF_CH 0b00000010 // 6 0 RF channel: f_CH[MHz] = 2400 MHz + NRF24_RF_CH
// NRF24_REG_RF_SETUP // NRF24_REG_RF_SETUP
#define NRF24_CONT_WAVE_OFF 0b00000000 // 7 7 continuous carrier transmit: disabled (default) #define RADIOLIB_NRF24_CONT_WAVE_OFF 0b00000000 // 7 7 continuous carrier transmit: disabled (default)
#define NRF24_CONT_WAVE_ON 0b10000000 // 7 7 enabled #define RADIOLIB_NRF24_CONT_WAVE_ON 0b10000000 // 7 7 enabled
#define NRF24_DR_250_KBPS 0b00100000 // 5 5 data rate: 250 kbps #define RADIOLIB_NRF24_DR_250_KBPS 0b00100000 // 5 5 data rate: 250 kbps
#define NRF24_DR_1_MBPS 0b00000000 // 3 3 1 Mbps (default) #define RADIOLIB_NRF24_DR_1_MBPS 0b00000000 // 3 3 1 Mbps (default)
#define NRF24_DR_2_MBPS 0b00001000 // 3 3 2 Mbps #define RADIOLIB_NRF24_DR_2_MBPS 0b00001000 // 3 3 2 Mbps
#define NRF24_PLL_LOCK_ON 0b00010000 // 4 4 force PLL lock: enabled #define RADIOLIB_NRF24_PLL_LOCK_ON 0b00010000 // 4 4 force PLL lock: enabled
#define NRF24_PLL_LOCK_OFF 0b00000000 // 4 4 disabled (default) #define RADIOLIB_NRF24_PLL_LOCK_OFF 0b00000000 // 4 4 disabled (default)
#define NRF24_RF_PWR_18_DBM 0b00000000 // 2 1 output power: -18 dBm #define RADIOLIB_NRF24_RF_PWR_18_DBM 0b00000000 // 2 1 output power: -18 dBm
#define NRF24_RF_PWR_12_DBM 0b00000010 // 2 1 -12 dBm #define RADIOLIB_NRF24_RF_PWR_12_DBM 0b00000010 // 2 1 -12 dBm
#define NRF24_RF_PWR_6_DBM 0b00000100 // 2 1 -6 dBm #define RADIOLIB_NRF24_RF_PWR_6_DBM 0b00000100 // 2 1 -6 dBm
#define NRF24_RF_PWR_0_DBM 0b00000110 // 2 1 0 dBm (default) #define RADIOLIB_NRF24_RF_PWR_0_DBM 0b00000110 // 2 1 0 dBm (default)
// NRF24_REG_STATUS // NRF24_REG_STATUS
#define NRF24_RX_DR 0b01000000 // 6 6 Rx data ready #define RADIOLIB_NRF24_RX_DR 0b01000000 // 6 6 Rx data ready
#define NRF24_TX_DS 0b00100000 // 5 5 Tx data sent #define RADIOLIB_NRF24_TX_DS 0b00100000 // 5 5 Tx data sent
#define NRF24_MAX_RT 0b00010000 // 4 4 maximum number of retransmits reached (must be cleared to continue) #define RADIOLIB_NRF24_MAX_RT 0b00010000 // 4 4 maximum number of retransmits reached (must be cleared to continue)
#define NRF24_RX_FIFO_EMPTY 0b00001110 // 3 1 Rx FIFO is empty #define RADIOLIB_NRF24_RX_FIFO_EMPTY 0b00001110 // 3 1 Rx FIFO is empty
#define NRF24_RX_P_NO 0b00000000 // 3 1 number of data pipe that received data #define RADIOLIB_NRF24_RX_P_NO 0b00000000 // 3 1 number of data pipe that received data
#define NRF24_TX_FIFO_FULL 0b00000001 // 0 0 Tx FIFO is full #define RADIOLIB_NRF24_TX_FIFO_FULL 0b00000001 // 0 0 Tx FIFO is full
// NRF24_REG_OBSERVE_TX // NRF24_REG_OBSERVE_TX
#define NRF24_PLOS_CNT 0b00000000 // 7 4 number of lost packets #define RADIOLIB_NRF24_PLOS_CNT 0b00000000 // 7 4 number of lost packets
#define NRF24_ARC_CNT 0b00000000 // 3 0 number of retransmitted packets #define RADIOLIB_NRF24_ARC_CNT 0b00000000 // 3 0 number of retransmitted packets
// NRF24_REG_RPD // NRF24_REG_RPD
#define NRF24_RP_BELOW_64_DBM 0b00000000 // 0 0 received power in the current channel: less than -64 dBm #define RADIOLIB_NRF24_RP_BELOW_64_DBM 0b00000000 // 0 0 received power in the current channel: less than -64 dBm
#define NRF24_RP_ABOVE_64_DBM 0b00000001 // 0 0 more than -64 dBm #define RADIOLIB_NRF24_RP_ABOVE_64_DBM 0b00000001 // 0 0 more than -64 dBm
// NRF24_REG_FIFO_STATUS // NRF24_REG_FIFO_STATUS
#define NRF24_TX_REUSE 0b01000000 // 6 6 reusing last transmitted payload #define RADIOLIB_NRF24_TX_REUSE 0b01000000 // 6 6 reusing last transmitted payload
#define NRF24_TX_FIFO_FULL_FLAG 0b00100000 // 5 5 Tx FIFO is full #define RADIOLIB_NRF24_TX_FIFO_FULL_FLAG 0b00100000 // 5 5 Tx FIFO is full
#define NRF24_TX_FIFO_EMPTY_FLAG 0b00010000 // 4 4 Tx FIFO is empty #define RADIOLIB_NRF24_TX_FIFO_EMPTY_FLAG 0b00010000 // 4 4 Tx FIFO is empty
#define NRF24_RX_FIFO_FULL_FLAG 0b00000010 // 1 1 Rx FIFO is full #define RADIOLIB_NRF24_RX_FIFO_FULL_FLAG 0b00000010 // 1 1 Rx FIFO is full
#define NRF24_RX_FIFO_EMPTY_FLAG 0b00000001 // 0 0 Rx FIFO is empty #define RADIOLIB_NRF24_RX_FIFO_EMPTY_FLAG 0b00000001 // 0 0 Rx FIFO is empty
// NRF24_REG_DYNPD // NRF24_REG_DYNPD
#define NRF24_DPL_P5_OFF 0b00000000 // 5 5 dynamic payload length on pipe 5: disabled (default) #define RADIOLIB_NRF24_DPL_P5_OFF 0b00000000 // 5 5 dynamic payload length on pipe 5: disabled (default)
#define NRF24_DPL_P5_ON 0b00100000 // 5 5 enabled #define RADIOLIB_NRF24_DPL_P5_ON 0b00100000 // 5 5 enabled
#define NRF24_DPL_P4_OFF 0b00000000 // 4 4 dynamic payload length on pipe 4: disabled (default) #define RADIOLIB_NRF24_DPL_P4_OFF 0b00000000 // 4 4 dynamic payload length on pipe 4: disabled (default)
#define NRF24_DPL_P4_ON 0b00010000 // 4 4 enabled #define RADIOLIB_NRF24_DPL_P4_ON 0b00010000 // 4 4 enabled
#define NRF24_DPL_P3_OFF 0b00000000 // 3 3 dynamic payload length on pipe 3: disabled (default) #define RADIOLIB_NRF24_DPL_P3_OFF 0b00000000 // 3 3 dynamic payload length on pipe 3: disabled (default)
#define NRF24_DPL_P3_ON 0b00001000 // 3 3 enabled #define RADIOLIB_NRF24_DPL_P3_ON 0b00001000 // 3 3 enabled
#define NRF24_DPL_P2_OFF 0b00000000 // 2 2 dynamic payload length on pipe 2: disabled (default) #define RADIOLIB_NRF24_DPL_P2_OFF 0b00000000 // 2 2 dynamic payload length on pipe 2: disabled (default)
#define NRF24_DPL_P2_ON 0b00000100 // 2 2 enabled #define RADIOLIB_NRF24_DPL_P2_ON 0b00000100 // 2 2 enabled
#define NRF24_DPL_P1_OFF 0b00000000 // 1 1 dynamic payload length on pipe 1: disabled (default) #define RADIOLIB_NRF24_DPL_P1_OFF 0b00000000 // 1 1 dynamic payload length on pipe 1: disabled (default)
#define NRF24_DPL_P1_ON 0b00000010 // 1 1 enabled #define RADIOLIB_NRF24_DPL_P1_ON 0b00000010 // 1 1 enabled
#define NRF24_DPL_P0_OFF 0b00000000 // 0 0 dynamic payload length on pipe 0: disabled (default) #define RADIOLIB_NRF24_DPL_P0_OFF 0b00000000 // 0 0 dynamic payload length on pipe 0: disabled (default)
#define NRF24_DPL_P0_ON 0b00000001 // 0 0 enabled #define RADIOLIB_NRF24_DPL_P0_ON 0b00000001 // 0 0 enabled
#define NRF24_DPL_ALL_OFF 0b00000000 // 5 0 disable all dynamic payloads #define RADIOLIB_NRF24_DPL_ALL_OFF 0b00000000 // 5 0 disable all dynamic payloads
#define NRF24_DPL_ALL_ON 0b00111111 // 5 0 enable all dynamic payloads #define RADIOLIB_NRF24_DPL_ALL_ON 0b00111111 // 5 0 enable all dynamic payloads
// NRF24_REG_FEATURE // NRF24_REG_FEATURE
#define NRF24_DPL_OFF 0b00000000 // 2 2 dynamic payload length: disabled (default) #define RADIOLIB_NRF24_DPL_OFF 0b00000000 // 2 2 dynamic payload length: disabled (default)
#define NRF24_DPL_ON 0b00000100 // 2 2 enabled #define RADIOLIB_NRF24_DPL_ON 0b00000100 // 2 2 enabled
#define NRF24_ACK_PAY_OFF 0b00000000 // 1 1 payload with ACK packets: disabled (default) #define RADIOLIB_NRF24_ACK_PAY_OFF 0b00000000 // 1 1 payload with ACK packets: disabled (default)
#define NRF24_ACK_PAY_ON 0b00000010 // 1 1 enabled #define RADIOLIB_NRF24_ACK_PAY_ON 0b00000010 // 1 1 enabled
#define NRF24_DYN_ACK_OFF 0b00000000 // 0 0 payloads without ACK: disabled (default) #define RADIOLIB_NRF24_DYN_ACK_OFF 0b00000000 // 0 0 payloads without ACK: disabled (default)
#define NRF24_DYN_ACK_ON 0b00000001 // 0 0 enabled #define RADIOLIB_NRF24_DYN_ACK_ON 0b00000001 // 0 0 enabled
/*! /*!
\class nRF24 \class nRF24
@ -191,6 +191,8 @@ class nRF24: public PhysicalLayer {
*/ */
nRF24(Module* mod); nRF24(Module* mod);
Module* getMod();
// basic methods // basic methods
/*! /*!