[LoRaWAN] Added APB example

This commit is contained in:
jgromes 2023-07-16 16:54:13 +02:00
parent 6a7773e005
commit 5e9b60a4b4

View file

@ -0,0 +1,119 @@
/*
RadioLib LoRaWAN End Device APB Example
This example sets up a LoRaWAN node using APB (activation
by personalization). Before you start, you will have to
register your device at https://www.thethingsnetwork.org/
After your device is registered, you can run this example.
The device will start uploading data directly,
without having to join the network.
NOTE: LoRaWAN requires storing some parameters persistently!
RadioLib does this by using EEPROM, by default
starting at address 0 and using 32 bytes.
If you already use EEPROM in your application,
you will have to either avoid this range, or change it
by setting a different start address by changing the value of
RADIOLIB_HAL_PERSISTENT_STORAGE_BASE macro, either
during build or in src/BuildOpt.h.
For default module settings, see the wiki page
https://github.com/jgromes/RadioLib/wiki/Default-configuration
For full API reference, see the GitHub Pages
https://jgromes.github.io/RadioLib/
*/
// include the library
#include <RadioLib.h>
// SX1278 has the following connections:
// NSS pin: 10
// DIO0 pin: 2
// RESET pin: 9
// DIO1 pin: 3
SX1278 radio = new Module(10, 2, 9, 3);
// create the node instance on the EU-868 band
// using the radio module and the encryption key
// make sure you are using the correct band
// based on your geographical location!
LoRaWANNode node(&radio, &EU868);
void setup() {
Serial.begin(9600);
// initialize SX1278 with default settings
Serial.print(F("[SX1278] Initializing ... "));
int state = radio.begin();
if(state == RADIOLIB_ERR_NONE) {
Serial.println(F("success!"));
} else {
Serial.print(F("failed, code "));
Serial.println(state);
while(true);
}
// first we need to initialize the device storage
// this will reset all persistently stored parameters
// NOTE: This should only be done once prior to first joining a network!
// After wiping persistent storage, you will also have to reset
// the end device in TTN!
//node.wipe();
// device address - this number can be anything
// when adding new end device in TTN, you can generate this number,
// or you can set any value you want, provided it is unique
uint32_t devAddr = 0x12345678;
// select some encryption keys which will be used to secure the communication
// there are two of them - network key and application key
// because LoRaWAN uses AES-128, the key MUST be 16 bytes (or characters) long
const char nwkSKey[] = "topSecretKey1234";
const char appSKey[] = "aDifferentKeyABC";
// start the device by directly providing the encryption keys and device address
Serial.print(F("[LoRaWAN] Attempting over-the-air activation ... "));
state = node.beginAPB(devAddr, (uint8_t*)nwkSKey, (uint8_t*)appSKey);
if(state == RADIOLIB_ERR_NONE) {
Serial.println(F("success!"));
} else {
Serial.print(F("failed, code "));
Serial.println(state);
while(true);
}
// after the device has been activated,
// network can be rejoined after device power cycle
// by calling "begin"
/*
Serial.print(F("[LoRaWAN] Resuming previous session ... "));
state = node.begin();
if(state == RADIOLIB_ERR_NONE) {
Serial.println(F("success!"));
} else {
Serial.print(F("failed, code "));
Serial.println(state);
while(true);
}
*/
}
// counter to keep track of transmitted packets
int count = 0;
void loop() {
// send uplink to port 10
Serial.print(F("[LoRaWAN] Sending uplink packet ... "));
String str = "Hello World! #" + String(count++);
int state = node.uplink(str, 10);
if(state == RADIOLIB_ERR_NONE) {
Serial.println(F("success!"));
} else {
Serial.print(F("failed, code "));
Serial.println(state);
}
// wait before sending another one
delay(10000);
}