[CC1101] Implemented packet reception

This commit is contained in:
jgromes 2019-02-09 12:04:39 +01:00
parent 269cafb8f3
commit 44e4a16b8b
3 changed files with 212 additions and 33 deletions

View file

@ -0,0 +1,70 @@
/*
RadioLib CC1101 Receive Example
This example receives packets using CC1101 FSK radio module.
*/
// include the library
#include <RadioLib.h>
// CC1101 is in slot A on the shield
CC1101 cc = RadioShield.ModuleA;
void setup() {
Serial.begin(9600);
// initialize CC1101 with default settings
Serial.print(F("[CC1101] Initializing ... "));
// carrier frequency: 868.0 MHz
// bit rate: 4.8 kbps
// Rx bandwidth: 325.0 kHz
// frequency deviation: 48.0 kHz
// sync word: 0xD391
int state = cc.begin();
if (state == ERR_NONE) {
Serial.println(F("success!"));
} else {
Serial.print(F("failed, code "));
Serial.println(state);
while (true);
}
}
void loop() {
Serial.print(F("[CC1101] Waiting for incoming transmission ... "));
// you can receive data as an Arduino String
String str;
int state = cc.receive(str);
// you can also receive data as byte array
/*
byte byteArr[8];
int state = cc.receive(byteArr, 8);
*/
if (state == ERR_NONE) {
// packet was successfully received
Serial.println(F("success!"));
// print the data of the packet
Serial.print(F("[CC1101] Data:\t\t"));
Serial.println(str);
// print RSSI (Received Signal Strength Indicator)
// of the last received packet
Serial.print("[CC1101] RSSI:\t\t");
Serial.print(cc.getRSSI());
Serial.println(" dBm");
// print LQI (Link Quality Indicator)
// of the last received packet, lower is better
Serial.print("[CC1101] LQI:\t\t");
Serial.println(cc.getLQI());
} else if (state == ERR_CRC_MISMATCH) {
// packet was received, but is malformed
Serial.println(F("CRC error!"));
}
}

View file

@ -69,6 +69,10 @@ int16_t CC1101::begin(float freq, float br, float rxBw, float freqDev) {
return(state);
}
// flush FIFOs
SPIsendCommand(CC1101_CMD_FLUSH_RX);
SPIsendCommand(CC1101_CMD_FLUSH_TX);
return(state);
}
@ -82,7 +86,7 @@ int16_t CC1101::transmit(const char* str, uint8_t addr) {
int16_t CC1101::transmit(uint8_t* data, size_t len, uint8_t addr) {
// check packet length
if(len > 255) {
if(len > 63) {
return(ERR_PACKET_TOO_LONG);
}
@ -90,13 +94,13 @@ int16_t CC1101::transmit(uint8_t* data, size_t len, uint8_t addr) {
standby();
// set GDO0 mapping
_mod->SPIsetRegValue(CC1101_REG_IOCFG0, CC1101_GDOX_SYNC_WORD_SENT_OR_RECEIVED);
SPIsetRegValue(CC1101_REG_IOCFG0, CC1101_GDOX_SYNC_WORD_SENT_OR_RECEIVED);
// write packet length
_mod->SPIwriteRegister(CC1101_REG_FIFO, len);
SPIwriteRegister(CC1101_REG_FIFO, len);
// write packet to FIFO
_mod->SPIwriteRegisterBurst(CC1101_REG_FIFO | CC1101_CMD_BURST, data, len);
SPIwriteRegisterBurst(CC1101_REG_FIFO, data, len);
// set mode to transmit
SPIsendCommand(CC1101_CMD_TX);
@ -131,10 +135,58 @@ int16_t CC1101::receive(String& str, size_t len) {
}
int16_t CC1101::receive(uint8_t* data, size_t len) {
// TODO
// set mode to standby
standby();
// set GDO0 and GDO2 mapping
// flush Rx FIFO
SPIsendCommand(CC1101_CMD_FLUSH_RX);
// set GDO0 mapping
SPIsetRegValue(CC1101_REG_IOCFG0, CC1101_GDOX_SYNC_WORD_SENT_OR_RECEIVED);
// set mode to receive
SPIsendCommand(CC1101_CMD_RX);
// wait for sync word
while(!digitalRead(_mod->getInt0()));
// wait for packet end
while(digitalRead(_mod->getInt0()));
// get packet length
size_t length = SPIreadRegister(CC1101_REG_RXBYTES) - 2;
// read packet data
if(len == 0) {
// argument len equal to zero indicates String call, which means dynamically allocated data array
// dispose of the original and create a new one
delete[] data;
data = new uint8_t[length + 1];
}
SPIreadRegisterBurst(CC1101_REG_FIFO, length, data);
// read RSSI byte
_rawRSSI = SPIgetRegValue(CC1101_REG_FIFO);
// read LQI and CRC byte
uint8_t val = SPIgetRegValue(CC1101_REG_FIFO);
_rawLQI = val & 0x7F;
// add terminating null
if(len == 0) {
data[length] = 0;
}
// flush Rx FIFO
SPIsendCommand(CC1101_CMD_FLUSH_RX);
// set mode to standby
standby();
// check CRC
if((val & 0b10000000) == 0b00000000) {
return(ERR_CRC_MISMATCH);
}
return(ERR_NONE);
}
@ -147,9 +199,9 @@ int16_t CC1101::standby() {
int16_t CC1101::transmitDirect(uint32_t FRF) {
// user requested to start transmitting immediately (required for RTTY)
if(FRF != 0) {
_mod->SPIwriteRegister(CC1101_REG_FREQ2, (FRF & 0xFF0000) >> 16);
_mod->SPIwriteRegister(CC1101_REG_FREQ1, (FRF & 0x00FF00) >> 8);
_mod->SPIwriteRegister(CC1101_REG_FREQ0, FRF & 0x0000FF);
SPIwriteRegister(CC1101_REG_FREQ2, (FRF & 0xFF0000) >> 16);
SPIwriteRegister(CC1101_REG_FREQ1, (FRF & 0x00FF00) >> 8);
SPIwriteRegister(CC1101_REG_FREQ0, FRF & 0x0000FF);
SPIsendCommand(CC1101_CMD_TX);
}
@ -191,9 +243,9 @@ int16_t CC1101::setFrequency(float freq) {
//set carrier frequency
uint32_t base = 1;
uint32_t FRF = (freq * (base << 16)) / 26.0;
int16_t state = _mod->SPIsetRegValue(CC1101_REG_FREQ2, (FRF & 0xFF0000) >> 16, 7, 0);
state |= _mod->SPIsetRegValue(CC1101_REG_FREQ1, (FRF & 0x00FF00) >> 8, 7, 0);
state |= _mod->SPIsetRegValue(CC1101_REG_FREQ0, FRF & 0x0000FF, 7, 0);
int16_t state = SPIsetRegValue(CC1101_REG_FREQ2, (FRF & 0xFF0000) >> 16, 7, 0);
state |= SPIsetRegValue(CC1101_REG_FREQ1, (FRF & 0x00FF00) >> 8, 7, 0);
state |= SPIsetRegValue(CC1101_REG_FREQ0, FRF & 0x0000FF, 7, 0);
return(state);
}
@ -213,8 +265,8 @@ int16_t CC1101::setBitRate(float br) {
getExpMant(br * 1000.0, 256, 28, 14, e, m);
// set bit rate value
int16_t state = _mod->SPIsetRegValue(CC1101_REG_MDMCFG4, e, 3, 0);
state |= _mod->SPIsetRegValue(CC1101_REG_MDMCFG3, m);
int16_t state = SPIsetRegValue(CC1101_REG_MDMCFG4, e, 3, 0);
state |= SPIsetRegValue(CC1101_REG_MDMCFG3, m);
return(state);
}
@ -233,7 +285,7 @@ int16_t CC1101::setRxBandwidth(float rxBw) {
float point = (CC1101_CRYSTAL_FREQ * 1000000.0)/(8 * (m + 4) * ((uint32_t)1 << e));
if(abs((rxBw * 1000.0) - point) <= 0.001) {
// set Rx channel filter bandwidth
return(_mod->SPIsetRegValue(CC1101_REG_MDMCFG4, (e << 6) | (m << 4), 7, 4));
return(SPIsetRegValue(CC1101_REG_MDMCFG4, (e << 6) | (m << 4), 7, 4));
}
}
}
@ -244,8 +296,8 @@ int16_t CC1101::setRxBandwidth(float rxBw) {
int16_t CC1101::setFrequencyDeviation(float freqDev) {
// set frequency deviation to lowest available setting (required for RTTY)
if(freqDev == 0.0) {
int16_t state = _mod->SPIsetRegValue(CC1101_REG_DEVIATN, 0, 6, 4);
state |= _mod->SPIsetRegValue(CC1101_REG_DEVIATN, 0, 2, 0);
int16_t state = SPIsetRegValue(CC1101_REG_DEVIATN, 0, 6, 4);
state |= SPIsetRegValue(CC1101_REG_DEVIATN, 0, 2, 0);
return(state);
}
@ -263,27 +315,50 @@ int16_t CC1101::setFrequencyDeviation(float freqDev) {
getExpMant(freqDev * 1000.0, 8, 17, 7, e, m);
// set frequency deviation value
int16_t state = _mod->SPIsetRegValue(CC1101_REG_DEVIATN, (e << 4), 6, 4);
state |= _mod->SPIsetRegValue(CC1101_REG_DEVIATN, m, 2, 0);
int16_t state = SPIsetRegValue(CC1101_REG_DEVIATN, (e << 4), 6, 4);
state |= SPIsetRegValue(CC1101_REG_DEVIATN, m, 2, 0);
return(state);
}
int16_t CC1101::setSyncWord(uint8_t syncH, uint8_t syncL) {
// set sync word
int16_t state = _mod->SPIsetRegValue(CC1101_REG_SYNC1, syncH);
state |= _mod->SPIsetRegValue(CC1101_REG_SYNC0, syncL);
int16_t state = SPIsetRegValue(CC1101_REG_SYNC1, syncH);
state |= SPIsetRegValue(CC1101_REG_SYNC0, syncL);
return(state);
}
float CC1101::getRSSI() {
float rssi;
if(_rawRSSI >= 128) {
rssi = (((float)_rawRSSI - 256.0)/2.0) - 74.0;
} else {
rssi = (((float)_rawRSSI)/2.0) - 74.0;
}
return(rssi);
}
uint8_t CC1101::getLQI() {
return(_rawLQI);
}
int16_t CC1101::config() {
// enable automatic frequency synthesizer calibration
int16_t state = _mod->SPIsetRegValue(CC1101_REG_MCSM0, CC1101_FS_AUTOCAL_IDLE_TO_RXTX, 5, 4);
int16_t state = SPIsetRegValue(CC1101_REG_MCSM0, CC1101_FS_AUTOCAL_IDLE_TO_RXTX, 5, 4);
if(state != ERR_NONE) {
return(state);
}
// set output power
_mod->SPIwriteRegister(CC1101_REG_PATABLE, 0x60);
// set packet mode
// TODO: address filtering
state = SPIsetRegValue(CC1101_REG_PKTCTRL1, CC1101_CRC_AUTOFLUSH_OFF | CC1101_APPEND_STATUS_ON | CC1101_ADR_CHK_NONE, 3, 0);
state |= SPIsetRegValue(CC1101_REG_PKTCTRL0, CC1101_WHITE_DATA_OFF | CC1101_PKT_FORMAT_NORMAL, 6, 4);
state |= SPIsetRegValue(CC1101_REG_PKTCTRL0, CC1101_CRC_ON | CC1101_LENGTH_CONFIG_VARIABLE, 2, 0);
if(state != ERR_NONE) {
return(state);
}
// TODO: configurable power output
SPIwriteRegister(CC1101_REG_PATABLE, 0x60);
return(state);
}
@ -293,11 +368,11 @@ int16_t CC1101::directMode() {
SPIsendCommand(CC1101_CMD_IDLE);
// set GDO0 and GDO2 mapping
int16_t state = _mod->SPIsetRegValue(CC1101_REG_IOCFG0, CC1101_GDOX_SERIAL_CLOCK , 5, 0);
state |= _mod->SPIsetRegValue(CC1101_REG_IOCFG2, CC1101_GDOX_SERIAL_DATA_SYNC , 5, 0);
int16_t state = SPIsetRegValue(CC1101_REG_IOCFG0, CC1101_GDOX_SERIAL_CLOCK , 5, 0);
state |= SPIsetRegValue(CC1101_REG_IOCFG2, CC1101_GDOX_SERIAL_DATA_SYNC , 5, 0);
// set continuous mode
state |= _mod->SPIsetRegValue(CC1101_REG_PKTCTRL0, CC1101_PKT_FORMAT_SYNCHRONOUS, 5, 4);
state |= SPIsetRegValue(CC1101_REG_PKTCTRL0, CC1101_PKT_FORMAT_SYNCHRONOUS, 5, 4);
return(state);
}
@ -327,9 +402,7 @@ void CC1101::getExpMant(float target, uint16_t mantOffset, uint8_t divExp, uint8
}
}
void CC1101::SPIwriteRegisterBurst(uint8_t reg, uint8_t* data, size_t len) {
_mod->SPIwriteRegisterBurst(reg | CC1101_CMD_BURST, data, len);
}
int16_t CC1101::SPIgetRegValue(uint8_t reg, uint8_t msb, uint8_t lsb) {
// status registers require special command
@ -340,6 +413,19 @@ int16_t CC1101::SPIgetRegValue(uint8_t reg, uint8_t msb, uint8_t lsb) {
return(_mod->SPIgetRegValue(reg, msb, lsb));
}
int16_t CC1101::SPIsetRegValue(uint8_t reg, uint8_t value, uint8_t msb, uint8_t lsb, uint8_t checkInterval) {
// status registers require special command
if(reg > CC1101_REG_TEST0) {
reg |= CC1101_CMD_ACCESS_STATUS_REG;
}
return(_mod->SPIsetRegValue(reg, value, msb, lsb, checkInterval));
}
void CC1101::SPIreadRegisterBurst(uint8_t reg, uint8_t numBytes, uint8_t* inBytes) {
_mod->SPIreadRegisterBurst(reg | CC1101_CMD_BURST, numBytes, inBytes);
}
uint8_t CC1101::SPIreadRegister(uint8_t reg) {
// status registers require special command
if(reg > CC1101_REG_TEST0) {
@ -349,6 +435,19 @@ uint8_t CC1101::SPIreadRegister(uint8_t reg) {
return(_mod->SPIreadRegister(reg));
}
void CC1101::SPIwriteRegister(uint8_t reg, uint8_t data) {
// status registers require special command
if(reg > CC1101_REG_TEST0) {
reg |= CC1101_CMD_ACCESS_STATUS_REG;
}
return(_mod->SPIwriteRegister(reg, data));
}
void CC1101::SPIwriteRegisterBurst(uint8_t reg, uint8_t* data, size_t len) {
_mod->SPIwriteRegisterBurst(reg | CC1101_CMD_BURST, data, len);
}
void CC1101::SPIsendCommand(uint8_t cmd) {
digitalWrite(_mod->getCs(), LOW);
SPI.beginTransaction(SPISettings(2000000, MSBFIRST, SPI_MODE0));

View file

@ -271,7 +271,8 @@
#define CC1101_RX_TIMEOUT_RSSI_ON 0b00010000 // 4 4 enabled
#define CC1101_RX_TIMEOUT_QUAL_OFF 0b00000000 // 3 3 check for sync word on Rx timeout
#define CC1101_RX_TIMEOUT_QUAL_ON 0b00001000 // 3 3 check for PQI set on Rx timeout
#define CC1101_RX_TIMEOUT 0b00000111 // 2 0 Rx timeout coefficient value
#define CC1101_RX_TIMEOUT_OFF 0b00000111 // 2 0 Rx timeout: disabled (default)
#define CC1101_RX_TIMEOUT_MAX 0b00000000 // 2 0 max value (actual value depends on WOR_RES, EVENT0 and f(XOSC))
// CC1101_REG_MCSM1
#define CC1101_CCA_MODE_ALWAYS 0b00000000 // 5 4 clear channel indication: always
@ -485,6 +486,7 @@
// CC1101_REG_PKTSTATUS
#define CC1101_CRC_OK 0b10000000 // 7 7 CRC check passed
#define CC1101_CRC_ERROR 0b00000000 // 7 7 CRC check failed
#define CC1101_CS 0b01000000 // 6 6 carrier sense
#define CC1101_PQT_REACHED 0b00100000 // 5 5 preamble quality reached
#define CC1101_CCA 0b00010000 // 4 4 channel clear
@ -498,7 +500,7 @@ class CC1101: public PhysicalLayer {
CC1101(Module* module);
// basic methods
int16_t begin(float freq = 868.0, float br = 115.2, float rxBw = 325.0, float freqDev = 48.0);
int16_t begin(float freq = 868.0, float br = 4.8, float rxBw = 325.0, float freqDev = 48.0);
int16_t transmit(String& str, uint8_t addr = 0);
int16_t transmit(const char* str, uint8_t addr = 0);
int16_t transmit(uint8_t* data, size_t len, uint8_t addr = 0);
@ -514,18 +516,26 @@ class CC1101: public PhysicalLayer {
int16_t setRxBandwidth(float rxBw);
int16_t setFrequencyDeviation(float freqDev);
int16_t setSyncWord(uint8_t syncH, uint8_t syncL);
float getRSSI();
uint8_t getLQI();
private:
Module* _mod;
uint8_t _rawRSSI;
uint8_t _rawLQI;
int16_t config();
int16_t directMode();
void getExpMant(float target, uint16_t mantOffset, uint8_t divExp, uint8_t expMax, uint8_t& exp, uint8_t& mant);
// SPI read overrides to set bit for burst write and status registers access
void SPIwriteRegisterBurst(uint8_t reg, uint8_t* data, size_t len);
int16_t SPIgetRegValue(uint8_t reg, uint8_t msb = 7, uint8_t lsb = 0);
int16_t SPIsetRegValue(uint8_t reg, uint8_t value, uint8_t msb = 7, uint8_t lsb = 0, uint8_t checkInterval = 2);
void SPIreadRegisterBurst(uint8_t reg, uint8_t numBytes, uint8_t* inBytes);
uint8_t SPIreadRegister(uint8_t reg);
void SPIwriteRegisterBurst(uint8_t reg, uint8_t* data, size_t len);
void SPIwriteRegister(uint8_t reg, uint8_t data);
void SPIsendCommand(uint8_t cmd);
};