[FEC] Added FEC class
This commit is contained in:
parent
551c6fd304
commit
191db8b5ff
2 changed files with 309 additions and 0 deletions
252
src/utils/FEC.cpp
Normal file
252
src/utils/FEC.cpp
Normal file
|
@ -0,0 +1,252 @@
|
|||
#include "FEC.h"
|
||||
#include <string.h>
|
||||
|
||||
RadioLibBCH::RadioLibBCH() {
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
BCH Encoder based on https://www.codeproject.com/articles/13189/pocsag-encoder
|
||||
|
||||
Significantly cleaned up and slightly fixed.
|
||||
*/
|
||||
void RadioLibBCH::begin(uint8_t n, uint8_t k, uint32_t poly) {
|
||||
this->n = n;
|
||||
this->k = k;
|
||||
this->poly = poly;
|
||||
this->alphaTo = new int32_t[n + 1];
|
||||
this->indexOf = new int32_t[n + 1];
|
||||
this->generator = new int32_t[n - k + 1];
|
||||
|
||||
// find the maximum power of the polynomial
|
||||
for(this->m = 0; this->m < 31; this->m++) {
|
||||
if((poly >> this->m) == 1) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m]
|
||||
* lookup tables: index->polynomial form this->alphaTo[] contains j=alpha**i;
|
||||
* polynomial form -> index form this->indexOf[j=alpha**i] = i alpha=2 is the
|
||||
* primitive element of GF(2**m)
|
||||
*/
|
||||
|
||||
int32_t mask = 1;
|
||||
this->alphaTo[this->m] = 0;
|
||||
|
||||
for(uint8_t i = 0; i < this->m; i++) {
|
||||
this->alphaTo[i] = mask;
|
||||
|
||||
this->indexOf[this->alphaTo[i]] = i;
|
||||
|
||||
if(this->poly & ((uint32_t)0x01 << i)) {
|
||||
this->alphaTo[this->m] ^= mask;
|
||||
}
|
||||
|
||||
mask <<= 1;
|
||||
}
|
||||
|
||||
this->indexOf[this->alphaTo[this->m]] = this->m;
|
||||
mask >>= 1;
|
||||
|
||||
for(uint8_t i = this->m + 1; i < this->n; i++) {
|
||||
if(this->alphaTo[i - 1] >= mask) {
|
||||
this->alphaTo[i] = this->alphaTo[this->m] ^ ((this->alphaTo[i - 1] ^ mask) << 1);
|
||||
} else {
|
||||
this->alphaTo[i] = this->alphaTo[i - 1] << 1;
|
||||
}
|
||||
|
||||
this->indexOf[this->alphaTo[i]] = i;
|
||||
}
|
||||
|
||||
this->indexOf[0] = -1;
|
||||
|
||||
/*
|
||||
* Compute generator polynomial of BCH code of length = 31, redundancy = 10
|
||||
* (OK, this is not very efficient, but we only do it once, right? :)
|
||||
*/
|
||||
|
||||
int32_t ii = 0;
|
||||
int32_t jj = 1;
|
||||
int32_t ll = 0;
|
||||
int32_t kaux = 0;
|
||||
bool test = false;
|
||||
int32_t aux = 0;
|
||||
int32_t cycle[15][6] = { { 0 } };
|
||||
int32_t size[15] = { 0 };
|
||||
|
||||
// Generate cycle sets modulo 31
|
||||
cycle[0][0] = 0; size[0] = 1;
|
||||
cycle[1][0] = 1; size[1] = 1;
|
||||
|
||||
do {
|
||||
// Generate the jj-th cycle set
|
||||
ii = 0;
|
||||
do {
|
||||
ii++;
|
||||
cycle[jj][ii] = (cycle[jj][ii - 1] * 2) % this->n;
|
||||
size[jj]++;
|
||||
aux = (cycle[jj][ii] * 2) % this->n;
|
||||
} while(aux != cycle[jj][0]);
|
||||
|
||||
// Next cycle set representative
|
||||
ll = 0;
|
||||
do {
|
||||
ll++;
|
||||
test = false;
|
||||
for(ii = 1; ((ii <= jj) && !test); ii++) {
|
||||
// Examine previous cycle sets
|
||||
for(kaux = 0; ((kaux < size[ii]) && !test); kaux++) {
|
||||
test = (ll == cycle[ii][kaux]);
|
||||
}
|
||||
}
|
||||
} while(test && (ll < (this->n - 1)));
|
||||
|
||||
if(!test) {
|
||||
jj++; // next cycle set index
|
||||
cycle[jj][0] = ll;
|
||||
size[jj] = 1;
|
||||
}
|
||||
|
||||
} while(ll < (this->n - 1));
|
||||
|
||||
// Search for roots 1, 2, ..., m-1 in cycle sets
|
||||
int32_t rdncy = 0;
|
||||
int32_t* min = new int32_t[this->n - this->k + 1];
|
||||
kaux = 0;
|
||||
|
||||
for(ii = 1; ii <= jj; ii++) {
|
||||
min[kaux] = 0;
|
||||
for(jj = 0; jj < size[ii]; jj++) {
|
||||
for(uint8_t root = 1; root < this->m; root++) {
|
||||
if(root == cycle[ii][jj]) {
|
||||
min[kaux] = ii;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(min[kaux]) {
|
||||
rdncy += size[min[kaux]];
|
||||
kaux++;
|
||||
}
|
||||
}
|
||||
|
||||
int32_t noterms = kaux;
|
||||
int32_t* zeros = new int32_t[this->n - this->k + 1];
|
||||
kaux = 1;
|
||||
|
||||
for(ii = 0; ii < noterms; ii++) {
|
||||
for(jj = 0; jj < size[min[ii]]; jj++) {
|
||||
zeros[kaux] = cycle[min[ii]][jj];
|
||||
kaux++;
|
||||
}
|
||||
}
|
||||
|
||||
delete[] min;
|
||||
|
||||
// Compute generator polynomial
|
||||
this->generator[0] = this->alphaTo[zeros[1]];
|
||||
this->generator[1] = 1; // g(x) = (X + zeros[1]) initially
|
||||
|
||||
for(ii = 2; ii <= rdncy; ii++) {
|
||||
this->generator[ii] = 1;
|
||||
for(jj = ii - 1; jj > 0; jj--) {
|
||||
if(this->generator[jj] != 0) {
|
||||
this->generator[jj] = this->generator[jj - 1] ^ this->alphaTo[(this->indexOf[this->generator[jj]] + zeros[ii]) % this->n];
|
||||
} else {
|
||||
this->generator[jj] = this->generator[jj - 1];
|
||||
}
|
||||
}
|
||||
this->generator[0] = this->alphaTo[(this->indexOf[this->generator[0]] + zeros[ii]) % this->n];
|
||||
}
|
||||
|
||||
delete[] zeros;
|
||||
}
|
||||
|
||||
/*
|
||||
BCH Encoder based on https://www.codeproject.com/articles/13189/pocsag-encoder
|
||||
|
||||
Significantly cleaned up and slightly fixed.
|
||||
*/
|
||||
uint32_t RadioLibBCH::encode(uint32_t dataword) {
|
||||
// we only use the "k" most significant bits
|
||||
int32_t* data = new int32_t[this->k];
|
||||
int32_t j1 = 0;
|
||||
for(int32_t i = this->n; i > (this->n - this->k); i--) {
|
||||
if(dataword & ((uint32_t)1<<i)) {
|
||||
data[j1++]=1;
|
||||
} else {
|
||||
data[j1++]=0;
|
||||
}
|
||||
}
|
||||
|
||||
// reset the M(x)+r array elements
|
||||
int32_t* Mr = new int32_t[this->n];
|
||||
memset(Mr, 0x00, this->n*sizeof(int32_t));
|
||||
|
||||
// copy the contents of data into Mr and add the zeros
|
||||
memcpy(Mr, data, this->k*sizeof(int32_t));
|
||||
|
||||
int32_t j = 0;
|
||||
int32_t start = 0;
|
||||
int32_t end = this->n - this->k;
|
||||
while(end < this->n) {
|
||||
for(int32_t i = end; i > start-2; --i) {
|
||||
if(Mr[start]) {
|
||||
Mr[i] ^= this->generator[j];
|
||||
++j;
|
||||
} else {
|
||||
++start;
|
||||
j = 0;
|
||||
end = start + this->n - this->k;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int32_t* bb = new int32_t[this->n - this->k + 1];
|
||||
j = 0;
|
||||
for(int32_t i = start; i < end; ++i) {
|
||||
bb[j] = Mr[i];
|
||||
++j;
|
||||
}
|
||||
delete[] Mr;
|
||||
|
||||
int32_t iEvenParity = 0;
|
||||
int32_t* recd = new int32_t[this->n + 1];
|
||||
for(uint8_t i = 0; i < this->k; i++) {
|
||||
recd[this->n - i] = data[i];
|
||||
if(data[i] == 1) {
|
||||
iEvenParity++;
|
||||
}
|
||||
}
|
||||
|
||||
delete[] data;
|
||||
|
||||
for(uint8_t i = 0; i < this->n - this->k + 1; i++) {
|
||||
recd[this->n - this->k - i] = bb[i];
|
||||
if(bb[i] == 1) {
|
||||
iEvenParity++;
|
||||
}
|
||||
}
|
||||
|
||||
delete[] bb;
|
||||
|
||||
if((iEvenParity % 2) == 0) {
|
||||
recd[0] = 0;
|
||||
} else {
|
||||
recd[0] = 1;
|
||||
}
|
||||
|
||||
int32_t res = 0;
|
||||
for(int32_t i = 0; i < this->n + 1; i++) {
|
||||
if(recd[i]) {
|
||||
res |= ((uint32_t)1<<i);
|
||||
}
|
||||
}
|
||||
|
||||
return(res);
|
||||
}
|
||||
|
||||
RadioLibBCH RadioLibBCHInstance;
|
57
src/utils/FEC.h
Normal file
57
src/utils/FEC.h
Normal file
|
@ -0,0 +1,57 @@
|
|||
#if !defined(_RADIOLIB_FEC_H)
|
||||
#define _RADIOLIB_FEC_H
|
||||
|
||||
#include "../TypeDef.h"
|
||||
#include "../Module.h"
|
||||
#if defined(RADIOLIB_BUILD_ARDUINO)
|
||||
#include "../ArduinoHal.h"
|
||||
#endif
|
||||
|
||||
// BCH(31, 21) code constants
|
||||
#define RADIOLIB_PAGER_BCH_N (31)
|
||||
#define RADIOLIB_PAGER_BCH_K (21)
|
||||
#define RADIOLIB_PAGER_BCH_PRIMITIVE_POLY (0x25)
|
||||
|
||||
/*!
|
||||
\class RadioLibBCH
|
||||
\brief Class to calculate Bose–Chaudhuri–Hocquenghem (BCH) class of forward error correction codes.
|
||||
In theory, this should be able to calculate an arbitrary BCH(N, K) code,
|
||||
but so far it was only tested for BCH(31, 21).
|
||||
*/
|
||||
class RadioLibBCH {
|
||||
public:
|
||||
/*!
|
||||
\brief Default constructor.
|
||||
*/
|
||||
RadioLibBCH();
|
||||
|
||||
/*!
|
||||
\brief Initialization method.
|
||||
\param n Code word length in bits, up to 32.
|
||||
\param k Data portion length in bits, up to "n".
|
||||
\param poly Powers of the irreducible polynomial.
|
||||
*/
|
||||
void begin(uint8_t n, uint8_t k, uint32_t poly);
|
||||
|
||||
/*!
|
||||
\brief Encoding method - encodes one data word (without check bits) into a code word (with check bits).
|
||||
\param dataword Data word without check bits. The caller is responsible to make sure the data is
|
||||
on the correct bit positions!
|
||||
\returns Code word with error check bits.
|
||||
*/
|
||||
uint32_t encode(uint32_t dataword);
|
||||
|
||||
private:
|
||||
uint8_t n;
|
||||
uint8_t k;
|
||||
uint32_t poly;
|
||||
uint8_t m;
|
||||
int32_t* alphaTo;
|
||||
int32_t* indexOf;
|
||||
int32_t* generator;
|
||||
};
|
||||
|
||||
// the global singleton
|
||||
extern RadioLibBCH RadioLibBCHInstance;
|
||||
|
||||
#endif
|
Loading…
Add table
Reference in a new issue