You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

748 lines
19 KiB
C

/*
* Copyright (C) 2010 mbelib Author
* GPG Key ID: 0xEA5EFE2C (9E7A 5527 9CDC EBF7 BF1B D772 4F98 E863 EA5E FE2C)
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "mbelib.h"
#include "ambe3600x2400_const.h"
void
mbe_dumpAmbe2400Data (char *ambe_d)
{
int i;
char *ambe;
ambe = ambe_d;
for (i = 0; i < 49; i++)
{
printf ("%i", *ambe);
ambe++;
}
printf (" ");
}
void
mbe_dumpAmbe3600x2400Frame (char ambe_fr[4][24])
{
int j;
// c0
printf ("ambe_fr c0: ");
for (j = 23; j >= 0; j--)
{
printf ("%i", ambe_fr[0][j]);
}
printf (" ");
// c1
printf ("ambe_fr c1: ");
for (j = 22; j >= 0; j--)
{
printf ("%i", ambe_fr[1][j]);
}
printf (" ");
// c2
printf ("ambe_fr c2: ");
for (j = 10; j >= 0; j--)
{
printf ("%i", ambe_fr[2][j]);
}
printf (" ");
// c3
printf ("ambe_fr c3: ");
for (j = 13; j >= 0; j--)
{
printf ("%i", ambe_fr[3][j]);
}
printf (" ");
}
int
mbe_eccAmbe3600x2400C0 (char ambe_fr[4][24])
{
int j, errs;
char in[23], out[23];
for (j = 0; j < 23; j++)
{
in[j] = ambe_fr[0][j + 1];
}
errs = mbe_golay2312 (in, out);
// ambe_fr[0][0] should be the C0 golay24 parity bit.
// TODO: actually test that here...
for (j = 0; j < 23; j++)
{
ambe_fr[0][j + 1] = out[j];
}
return (errs);
}
int
mbe_eccAmbe3600x2400Data (char ambe_fr[4][24], char *ambe_d)
{
int j, errs;
char *ambe, gin[24], gout[24];
ambe = ambe_d;
// just copy C0
for (j = 23; j > 11; j--)
{
*ambe = ambe_fr[0][j];
ambe++;
}
// ecc and copy C1
for (j = 0; j < 23; j++)
{
gin[j] = ambe_fr[1][j];
}
errs = mbe_golay2312 (gin, gout);
for (j = 22; j > 10; j--)
{
*ambe = gout[j];
ambe++;
}
// just copy C2
for (j = 10; j >= 0; j--)
{
*ambe = ambe_fr[2][j];
ambe++;
}
// just copy C3
for (j = 13; j >= 0; j--)
{
*ambe = ambe_fr[3][j];
ambe++;
}
return (errs);
}
int
mbe_decodeAmbe2400Parms (char *ambe_d, mbe_parms * cur_mp, mbe_parms * prev_mp)
{
int ji, i, j, k, l, L, m, am, ak;
int intkl[57];
int b0, b1, b2, b3, b4, b5, b6, b7, b8;
float f0, Cik[5][18], flokl[57], deltal[57];
float Sum42, Sum43, Tl[57], Gm[9], Ri[9], sum, c1, c2;
int silence;
int Ji[5], jl;
float deltaGamma, BigGamma;
float unvc, rconst;
silence = 0;
#ifdef AMBE_DEBUG
printf ("\n");
#endif
// copy repeat from prev_mp
cur_mp->repeat = prev_mp->repeat;
// check if frame is tone or other; this matches section 7.2 on the P25 Half rate vocoder annex doc
b0 = 0;
b0 |= ambe_d[0]<<6;
b0 |= ambe_d[1]<<5;
b0 |= ambe_d[2]<<4;
b0 |= ambe_d[3]<<3;
b0 |= ambe_d[4]<<2;
b0 |= ambe_d[5]<<1;
b0 |= ambe_d[48];
if ((b0&0x7E) == 0x7E) // frame is tone
{
// find tone index
// Cx# 0000000000001111111111112222222222233333333333333
//
// IDX 0000000000111111111122222222223333333333444444444
// idx 0123456789012345678901234567890123456789012345678
// exm 1111110101001110100000001000000000000000001100000 : t=0111100
// ex2 1111110110101110100000000000000000000000000000000 : t=1100010
// ex3 1111110010101110110000001000000000000000000110000 : t=0000110
// tt1 1111110010011110100000001000000000000000000101000 : t=0000101
// tt3 1111110010011110000000001000000000000000000101000
// ton HHHHHHDEF410======......P.................32==...
// vol 765430 21
//DEF indexes the following tables for tone bits 5-7
int t7tab[8] = {1,0,0,0,0,1,1,1};
int t6tab[8] = {0,0,0,1,1,1,1,0};
int t5tab[8] = {0,0,1,0,1,1,0,1};
// V V V V V G G G V = verified, G = guessed (and unused by all normal tone indices)
b1 = 0;
b1 |= t7tab[((ambe_d[6]<<2)|(ambe_d[7]<<1)|ambe_d[8])]<<7; //t7 128
b1 |= t6tab[((ambe_d[6]<<2)|(ambe_d[7]<<1)|ambe_d[8])]<<6; //t6 64
b1 |= t5tab[((ambe_d[6]<<2)|(ambe_d[7]<<1)|ambe_d[8])]<<5; //t5 32
b1 |= ambe_d[9]<<4; //t4 16 e verified
b1 |= ambe_d[42]<<3; //t3 8 d verified
b1 |= ambe_d[43]<<2; //t2 4 c verified
b1 |= ambe_d[10]<<1; //t1 2 b verified
b1 |= ambe_d[11]; //t0 1 a verified
b2 = 0;
b2 |= ambe_d[12]<<7; //v7 128 h verified
b2 |= ambe_d[13]<<6; //v6 64 g verified
b2 |= ambe_d[14]<<5; //v5 32 f verified
b2 |= ambe_d[15]<<4; //v4 16 e guess based on data
b2 |= ambe_d[16]<<3; //v3 8 d guess based on data
b2 |= ambe_d[44]<<2; //v2 4 c guess based on data
b2 |= ambe_d[45]<<1; //v1 2 b guess based on data
b2 |= ambe_d[17]; //v0 1 a guess based on data
// the order of the last 3 bits may really be 17,44,45 not 44,45,17 as above
fprintf(stderr,"Tone volume: %d; ", b2);
if (b1 < 5)
{
fprintf(stderr, "index: %d, was <5, invalid!\n", b1);
silence = 1;
}
else if ((b1 >= 5) && (b1 <= 122))
{
fprintf(stderr, "index: %d, Single tone hz: %f\n", b1, (float)b1*31.25);
}
else if ((b1 > 122) && (b1 < 128))
{
fprintf(stderr, "index: %d, was >122 and <128, invalid!\n", b1);
silence = 1;
}
else if ((b1 >= 128) && (b1 <= 163))
{
fprintf(stderr, "index: %d, Dual tone\n", b1);
// note: dual tone index is different on ambe(dstar) and ambe2+
}
else
{
fprintf(stderr, "index: %d, was >163, invalid!\n", b1);
silence = 1;
}
if(silence == 1)
{
#ifdef AMBE_DEBUG
printf ("Silence Frame\n");
#endif
cur_mp->w0 = ((float) 2 * M_PI) / (float) 32;
f0 = (float) 1 / (float) 32;
L = 14;
cur_mp->L = 14;
for (l = 1; l <= L; l++)
{
cur_mp->Vl[l] = 0;
}
}
#ifdef AMBE_DEBUG
printf ("Tone Frame\n");
#endif
return (3);
}
//fprintf(stderr,"Voice Frame, Pitch = %f\n", powf(2, ((float)b0+195.626)/-46.368)*8000); // was 45.368
//fprintf(stderr,"Voice Frame, rawPitch = %02d, Pitch = %f\n", b0, powf(2, ((-1*(float)(17661/((int)1<<12))) - (2.1336e-2 * ((float)b0+0.5))))*8000);
//fprintf(stderr,"Voice Frame, Pitch = %f, ", powf(2, (-4.311767578125 - (2.1336e-2 * ((float)b0+0.5))))*8000);
// decode fundamental frequency w0 from b0 is already done
if (silence == 0)
{
// w0 from specification document
//f0 = AmbeW0table[b0];
//cur_mp->w0 = f0 * (float) 2 *M_PI;
// w0 from patent filings
//f0 = powf (2, ((float) b0 + (float) 195.626) / -(float) 46.368); // was 45.368
// w0 guess
f0 = powf(2, (-4.311767578125 - (2.1336e-2 * ((float)b0+0.5))));
cur_mp->w0 = f0 * (float) 2 *M_PI;
}
unvc = (float) 0.2046 / sqrtf (cur_mp->w0);
//unvc = (float) 1;
//unvc = (float) 0.2046 / sqrtf (f0);
// decode L
L = 0;
if (silence == 0)
{
// L from specification document
// lookup L in tabl3
L = AmbePlusLtable[b0];
// L formula from patent filings
//L=(int)((float)0.4627 / f0);
cur_mp->L = L;
}
// decode V/UV parameters
// load b1 from ambe_d
//TODO: use correct table (i.e. 0x0000 0x0005 0x0050 0x0055 etc)
b1 = 0;
b1 |= ambe_d[38]<<3;
b1 |= ambe_d[39]<<2;
b1 |= ambe_d[40]<<1;
b1 |= ambe_d[41];
//fprintf(stderr,"V/UV = %d, ", b1);
for (l = 1; l <= L; l++)
{
// jl from specification document
jl = (int) ((float) l * (float) 16.0 * f0);
// jl from patent filings?
//jl = (int)(((float)l * (float)16.0 * f0) + 0.25);
if (silence == 0)
{
cur_mp->Vl[l] = AmbePlusVuv[b1][jl];
}
#ifdef AMBE_DEBUG
printf ("jl[%i]:%i Vl[%i]:%i\n", l, jl, l, cur_mp->Vl[l]);
#endif
}
#ifdef AMBE_DEBUG
printf ("\nb0:%i w0:%f L:%i b1:%i\n", b0, cur_mp->w0, L, b1);
#endif
// decode gain vector
// load b2 from ambe_d
b2 = 0;
b2 |= ambe_d[6]<<5;
b2 |= ambe_d[7]<<4;
b2 |= ambe_d[8]<<3;
b2 |= ambe_d[9]<<2;
b2 |= ambe_d[42]<<1;
b2 |= ambe_d[43];
//fprintf(stderr,"Gain = %d,\n", b2);
deltaGamma = AmbePlusDg[b2];
cur_mp->gamma = deltaGamma + ((float) 0.5 * prev_mp->gamma);
#ifdef AMBE_DEBUG
printf ("b2: %i, deltaGamma: %f gamma: %f gamma-1: %f\n", b2, deltaGamma, cur_mp->gamma, prev_mp->gamma);
#endif
// decode PRBA vectors
Gm[1] = 0;
// load b3 from ambe_d
b3 = 0;
b3 |= ambe_d[10]<<8;
b3 |= ambe_d[11]<<7;
b3 |= ambe_d[12]<<6;
b3 |= ambe_d[13]<<5;
b3 |= ambe_d[14]<<4;
b3 |= ambe_d[15]<<3;
b3 |= ambe_d[16]<<2;
b3 |= ambe_d[44]<<1;
b3 |= ambe_d[45];
Gm[2] = AmbePlusPRBA24[b3][0];
Gm[3] = AmbePlusPRBA24[b3][1];
Gm[4] = AmbePlusPRBA24[b3][2];
// load b4 from ambe_d
b4 = 0;
b4 |= ambe_d[17]<<6;
b4 |= ambe_d[18]<<5;
b4 |= ambe_d[19]<<4;
b4 |= ambe_d[20]<<3;
b4 |= ambe_d[21]<<2;
b4 |= ambe_d[46]<<1;
b4 |= ambe_d[47];
Gm[5] = AmbePlusPRBA58[b4][0];
Gm[6] = AmbePlusPRBA58[b4][1];
Gm[7] = AmbePlusPRBA58[b4][2];
Gm[8] = AmbePlusPRBA58[b4][3];
#ifdef AMBE_DEBUG
printf ("b3: %i Gm[2]: %f Gm[3]: %f Gm[4]: %f b4: %i Gm[5]: %f Gm[6]: %f Gm[7]: %f Gm[8]: %f\n", b3, Gm[2], Gm[3], Gm[4], b4, Gm[5], Gm[6], Gm[7], Gm[8]);
#endif
// compute Ri
for (i = 1; i <= 8; i++)
{
sum = 0;
for (m = 1; m <= 8; m++)
{
if (m == 1)
{
am = 1;
}
else
{
am = 2;
}
sum = sum + ((float) am * Gm[m] * cosf ((M_PI * (float) (m - 1) * ((float) i - (float) 0.5)) / (float) 8));
}
Ri[i] = sum;
#ifdef AMBE_DEBUG
printf ("R%i: %f ", i, Ri[i]);
#endif
}
#ifdef AMBE_DEBUG
printf ("\n");
#endif
// generate first to elements of each Ci,k block from PRBA vector
rconst = ((float) 1 / ((float) 2 * M_SQRT2));
Cik[1][1] = (float) 0.5 *(Ri[1] + Ri[2]);
Cik[1][2] = rconst * (Ri[1] - Ri[2]);
Cik[2][1] = (float) 0.5 *(Ri[3] + Ri[4]);
Cik[2][2] = rconst * (Ri[3] - Ri[4]);
Cik[3][1] = (float) 0.5 *(Ri[5] + Ri[6]);
Cik[3][2] = rconst * (Ri[5] - Ri[6]);
Cik[4][1] = (float) 0.5 *(Ri[7] + Ri[8]);
Cik[4][2] = rconst * (Ri[7] - Ri[8]);
// decode HOC
// load b5 from ambe_d
b5 = 0;
b5 |= ambe_d[22]<<3;
b5 |= ambe_d[23]<<2;
b5 |= ambe_d[25]<<1;
b5 |= ambe_d[26];
// load b6 from ambe_d
b6 = 0;
b6 |= ambe_d[27]<<3;
b6 |= ambe_d[28]<<2;
b6 |= ambe_d[29]<<1;
b6 |= ambe_d[30];
// load b7 from ambe_d
b7 = 0;
b7 |= ambe_d[31]<<3;
b7 |= ambe_d[32]<<2;
b7 |= ambe_d[33]<<1;
b7 |= ambe_d[34];
// load b8 from ambe_d
b8 = 0;
b8 |= ambe_d[35]<<3;
b8 |= ambe_d[36]<<2;
b8 |= ambe_d[37]<<1;
//b8 |= 0; // least significant bit of hoc3 unused here, and according to the patent is forced to 0 when not used
// lookup Ji
Ji[1] = AmbePlusLmprbl[L][0];
Ji[2] = AmbePlusLmprbl[L][1];
Ji[3] = AmbePlusLmprbl[L][2];
Ji[4] = AmbePlusLmprbl[L][3];
#ifdef AMBE_DEBUG
printf ("Ji[1]: %i Ji[2]: %i Ji[3]: %i Ji[4]: %i\n", Ji[1], Ji[2], Ji[3], Ji[4]);
printf ("b5: %i b6: %i b7: %i b8: %i\n", b5, b6, b7, b8);
#endif
// Load Ci,k with the values from the HOC tables
// there appear to be a couple typos in eq. 37 so we will just do what makes sense
// (3 <= k <= Ji and k<=6)
for (k = 3; k <= Ji[1]; k++)
{
if (k > 6)
{
Cik[1][k] = 0;
}
else
{
Cik[1][k] = AmbePlusHOCb5[b5][k - 3];
#ifdef AMBE_DEBUG
printf ("C1,%i: %f ", k, Cik[1][k]);
#endif
}
}
for (k = 3; k <= Ji[2]; k++)
{
if (k > 6)
{
Cik[2][k] = 0;
}
else
{
Cik[2][k] = AmbePlusHOCb6[b6][k - 3];
#ifdef AMBE_DEBUG
printf ("C2,%i: %f ", k, Cik[2][k]);
#endif
}
}
for (k = 3; k <= Ji[3]; k++)
{
if (k > 6)
{
Cik[3][k] = 0;
}
else
{
Cik[3][k] = AmbePlusHOCb7[b7][k - 3];
#ifdef AMBE_DEBUG
printf ("C3,%i: %f ", k, Cik[3][k]);
#endif
}
}
for (k = 3; k <= Ji[4]; k++)
{
if (k > 6)
{
Cik[4][k] = 0;
}
else
{
Cik[4][k] = AmbePlusHOCb8[b8][k - 3];
#ifdef AMBE_DEBUG
printf ("C4,%i: %f ", k, Cik[4][k]);
#endif
}
}
#ifdef AMBE_DEBUG
printf ("\n");
#endif
// inverse DCT each Ci,k to give ci,j (Tl)
l = 1;
for (i = 1; i <= 4; i++)
{
ji = Ji[i];
for (j = 1; j <= ji; j++)
{
sum = 0;
for (k = 1; k <= ji; k++)
{
if (k == 1)
{
ak = 1;
}
else
{
ak = 2;
}
#ifdef AMBE_DEBUG
printf ("j: %i Cik[%i][%i]: %f ", j, i, k, Cik[i][k]);
#endif
sum = sum + ((float) ak * Cik[i][k] * cosf ((M_PI * (float) (k - 1) * ((float) j - (float) 0.5)) / (float) ji));
}
Tl[l] = sum;
#ifdef AMBE_DEBUG
printf ("Tl[%i]: %f\n", l, Tl[l]);
#endif
l++;
}
}
// determine log2Ml by applying ci,j to previous log2Ml
// fix for when L > L(-1)
if (cur_mp->L > prev_mp->L)
{
for (l = (prev_mp->L) + 1; l <= cur_mp->L; l++)
{
prev_mp->Ml[l] = prev_mp->Ml[prev_mp->L];
prev_mp->log2Ml[l] = prev_mp->log2Ml[prev_mp->L];
}
}
prev_mp->log2Ml[0] = prev_mp->log2Ml[1];
prev_mp->Ml[0] = prev_mp->Ml[1];
// Part 1
Sum43 = 0;
for (l = 1; l <= cur_mp->L; l++)
{
// eq. 40
flokl[l] = ((float) prev_mp->L / (float) cur_mp->L) * (float) l;
intkl[l] = (int) (flokl[l]);
#ifdef AMBE_DEBUG
printf ("flok%i: %f, intk%i: %i ", l, flokl[l], l, intkl[l]);
#endif
// eq. 41
deltal[l] = flokl[l] - (float) intkl[l];
#ifdef AMBE_DEBUG
printf ("delta%i: %f ", l, deltal[l]);
#endif
// eq 43
Sum43 = Sum43 + ((((float) 1 - deltal[l]) * prev_mp->log2Ml[intkl[l]]) + (deltal[l] * prev_mp->log2Ml[intkl[l] + 1]));
}
Sum43 = (((float) 0.65 / (float) cur_mp->L) * Sum43);
#ifdef AMBE_DEBUG
printf ("\n");
printf ("Sum43: %f\n", Sum43);
#endif
// Part 2
Sum42 = 0;
for (l = 1; l <= cur_mp->L; l++)
{
Sum42 += Tl[l];
}
Sum42 = Sum42 / (float) cur_mp->L;
BigGamma = cur_mp->gamma - ((float) 0.5 * (log ((float) cur_mp->L) / log ((float) 2))) - Sum42;
//BigGamma=cur_mp->gamma - ((float)0.5 * log((float)cur_mp->L)) - Sum42;
// Part 3
for (l = 1; l <= cur_mp->L; l++)
{
c1 = ((float) 0.65 * ((float) 1 - deltal[l]) * prev_mp->log2Ml[intkl[l]]);
c2 = ((float) 0.65 * deltal[l] * prev_mp->log2Ml[intkl[l] + 1]);
cur_mp->log2Ml[l] = Tl[l] + c1 + c2 - Sum43 + BigGamma;
// inverse log to generate spectral amplitudes
if (cur_mp->Vl[l] == 1)
{
cur_mp->Ml[l] = exp ((float) 0.693 * cur_mp->log2Ml[l]);
}
else
{
cur_mp->Ml[l] = unvc * exp ((float) 0.693 * cur_mp->log2Ml[l]);
}
#ifdef AMBE_DEBUG
printf ("flokl[%i]: %f, intkl[%i]: %i ", l, flokl[l], l, intkl[l]);
printf ("deltal[%i]: %f ", l, deltal[l]);
printf ("prev_mp->log2Ml[%i]: %f\n", l, prev_mp->log2Ml[intkl[l]]);
printf ("BigGamma: %f c1: %f c2: %f Sum43: %f Tl[%i]: %f log2Ml[%i]: %f Ml[%i]: %f\n", BigGamma, c1, c2, Sum43, l, Tl[l], l, cur_mp->log2Ml[l], l, cur_mp->Ml[l]);
#endif
}
return (0);
}
void
mbe_demodulateAmbe3600x2400Data (char ambe_fr[4][24])
{
int i, j, k;
unsigned short pr[115];
unsigned short foo = 0;
// create pseudo-random modulator
for (i = 23; i >= 12; i--)
{
foo <<= 1;
foo |= ambe_fr[0][i];
}
pr[0] = (16 * foo);
for (i = 1; i < 24; i++)
{
pr[i] = (173 * pr[i - 1]) + 13849 - (65536 * (((173 * pr[i - 1]) + 13849) / 65536));
}
for (i = 1; i < 24; i++)
{
pr[i] = pr[i] / 32768;
}
// demodulate ambe_fr with pr
k = 1;
for (j = 22; j >= 0; j--)
{
ambe_fr[1][j] = ((ambe_fr[1][j]) ^ pr[k]);
k++;
}
}
void
mbe_processAmbe2400Dataf (float *aout_buf, int *errs2, char *err_str, char ambe_d[49], mbe_parms * cur_mp, mbe_parms * prev_mp, mbe_parms * prev_mp_enhanced, int uvquality)
{
int i, bad;
for (i = 0; i < *errs2; i++)
{
*err_str = '=';
err_str++;
}
bad = mbe_decodeAmbe2400Parms (ambe_d, cur_mp, prev_mp);
if (bad == 2)
{
// Erasure frame
*err_str = 'E';
err_str++;
cur_mp->repeat = 0;
}
else if (bad == 3)
{
// Tone Frame
*err_str = 'T';
err_str++;
cur_mp->repeat = 0;
}
else if (*errs2 > 3)
{
mbe_useLastMbeParms (cur_mp, prev_mp);
cur_mp->repeat++;
*err_str = 'R';
err_str++;
}
else
{
cur_mp->repeat = 0;
}
if (bad == 0)
{
if (cur_mp->repeat <= 3)
{
mbe_moveMbeParms (cur_mp, prev_mp);
mbe_spectralAmpEnhance (cur_mp);
mbe_synthesizeSpeechf (aout_buf, cur_mp, prev_mp_enhanced, uvquality);
mbe_moveMbeParms (cur_mp, prev_mp_enhanced);
}
else
{
*err_str = 'M';
err_str++;
mbe_synthesizeSilencef (aout_buf);
mbe_initMbeParms (cur_mp, prev_mp, prev_mp_enhanced);
}
}
else
{
mbe_synthesizeSilencef (aout_buf);
mbe_initMbeParms (cur_mp, prev_mp, prev_mp_enhanced);
}
*err_str = 0;
}
void
mbe_processAmbe2400Data (short *aout_buf, int *errs2, char *err_str, char ambe_d[49], mbe_parms * cur_mp, mbe_parms * prev_mp, mbe_parms * prev_mp_enhanced, int uvquality)
{
float float_buf[160];
mbe_processAmbe2400Dataf (float_buf, errs2, err_str, ambe_d, cur_mp, prev_mp, prev_mp_enhanced, uvquality);
mbe_floattoshort (float_buf, aout_buf);
}
void
mbe_processAmbe3600x2400Framef (float *aout_buf, int *errs2, char *err_str, char ambe_fr[4][24], char ambe_d[49], mbe_parms * cur_mp, mbe_parms * prev_mp, mbe_parms * prev_mp_enhanced, int uvquality)
{
int errs = 0;
*errs2 = 0;
errs = mbe_eccAmbe3600x2400C0 (ambe_fr);
mbe_demodulateAmbe3600x2400Data (ambe_fr);
*errs2 = errs;
*errs2 += mbe_eccAmbe3600x2400Data (ambe_fr, ambe_d);
mbe_processAmbe2400Dataf (aout_buf, errs2, err_str, ambe_d, cur_mp, prev_mp, prev_mp_enhanced, uvquality);
}
void
mbe_processAmbe3600x2400Frame (short *aout_buf, int *errs2, char *err_str, char ambe_fr[4][24], char ambe_d[49], mbe_parms * cur_mp, mbe_parms * prev_mp, mbe_parms * prev_mp_enhanced, int uvquality)
{
float float_buf[160];
mbe_processAmbe3600x2400Framef (float_buf, errs2, err_str, ambe_fr, ambe_d, cur_mp, prev_mp, prev_mp_enhanced, uvquality);
mbe_floattoshort (float_buf, aout_buf);
}