You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

374 lines
12 KiB
C++

/*
* Copyright (C) 2005, 2006, 2008 Free Software Foundation, Inc.
* Copyright (C) 2011,2015 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "SHA256.h"
#include <cstdio>
#include <cstring>
#include <cassert>
#ifdef WORDS_BIGENDIAN
# define SWAP(n) (n)
#else
# define SWAP(n) \
(((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
#endif
#define BLOCKSIZE 4096
#if BLOCKSIZE % 64 != 0
# error "invalid BLOCKSIZE"
#endif
/* This array contains the bytes used to pad the buffer to the next
64-byte boundary. */
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
/*
Takes a pointer to a 256 bit block of data (eight 32 bit ints) and
intializes it to the start constants of the SHA256 algorithm. This
must be called before using hash in the call to sha256_hash
*/
CSHA256::CSHA256() :
m_state(NULL),
m_total(NULL),
m_buflen(0U),
m_buffer(NULL)
{
m_state = new uint32_t[8U];
m_total = new uint32_t[2U];
m_buffer = new uint32_t[32U];
init();
}
CSHA256::~CSHA256()
{
delete[] m_state;
delete[] m_total;
delete[] m_buffer;
}
void CSHA256::init()
{
m_state[0] = 0x6a09e667UL;
m_state[1] = 0xbb67ae85UL;
m_state[2] = 0x3c6ef372UL;
m_state[3] = 0xa54ff53aUL;
m_state[4] = 0x510e527fUL;
m_state[5] = 0x9b05688cUL;
m_state[6] = 0x1f83d9abUL;
m_state[7] = 0x5be0cd19UL;
m_total[0] = m_total[1] = 0;
m_buflen = 0;
}
/* Copy the value from v into the memory location pointed to by *cp,
If your architecture allows unaligned access this is equivalent to
* (uint32_t *) cp = v */
static inline void set_uint32(unsigned char* cp, uint32_t v)
{
assert(cp != NULL);
::memcpy(cp, &v, sizeof v);
}
/* Put result from CTX in first 32 bytes following RESBUF. The result
must be in little endian byte order. */
unsigned char* CSHA256::read(unsigned char* resbuf)
{
assert(resbuf != NULL);
for (unsigned int i = 0U; i < 8U; i++)
set_uint32(resbuf + i * sizeof(m_state[0]), SWAP(m_state[i]));
return resbuf;
}
/* Process the remaining bytes in the internal buffer and the usual
prolog according to the standard and write the result to RESBUF. */
void CSHA256::conclude()
{
/* Take yet unprocessed bytes into account. */
unsigned int bytes = m_buflen;
unsigned int size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
/* Now count remaining bytes. */
m_total[0] += bytes;
if (m_total[0] < bytes)
++m_total[1];
/* Put the 64-bit file length in *bits* at the end of the buffer.
Use set_uint32 rather than a simple assignment, to avoid risk of
unaligned access. */
set_uint32((unsigned char*)&m_buffer[size - 2], SWAP((m_total[1] << 3) | (m_total[0] >> 29)));
set_uint32((unsigned char*)&m_buffer[size - 1], SWAP(m_total[0] << 3));
::memcpy(&((char*)m_buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
/* Process last bytes. */
processBlock((unsigned char*)m_buffer, size * 4);
}
unsigned char* CSHA256::finish(unsigned char* resbuf)
{
assert(resbuf != NULL);
conclude();
return read(resbuf);
}
/* Compute SHA256 message digest for LEN bytes beginning at BUFFER. The
result is always in little endian byte order, so that a byte-wise
output yields to the wanted ASCII representation of the message
digest. */
unsigned char* CSHA256::buffer(const unsigned char* buffer, unsigned int len, unsigned char* resblock)
{
assert(buffer != NULL);
assert(resblock != NULL);
/* Initialize the computation context. */
init();
/* Process whole buffer but last len % 64 bytes. */
processBytes(buffer, len);
/* Put result in desired memory area. */
return finish(resblock);
}
void CSHA256::processBytes(const unsigned char* buffer, unsigned int len)
{
assert(buffer != NULL);
/* When we already have some bits in our internal buffer concatenate
both inputs first. */
if (m_buflen != 0U) {
unsigned int left_over = m_buflen;
unsigned int add = 128U - left_over > len ? len : 128U - left_over;
::memcpy(&((char*)m_buffer)[left_over], buffer, add);
m_buflen += add;
if (m_buflen > 64U) {
processBlock((unsigned char*)m_buffer, m_buflen & ~63U);
m_buflen &= 63U;
/* The regions in the following copy operation cannot overlap. */
::memcpy(m_buffer, &((char*)m_buffer)[(left_over + add) & ~63U], m_buflen);
}
buffer += add;
len -= add;
}
/* Process available complete blocks. */
if (len >= 64U) {
//#if !_STRING_ARCH_unaligned
//# define alignof(type) offsetof (struct { char c; type x; }, x)
//# define UNALIGNED_P(p) (((unsigned int) p) % alignof (uint32_t) != 0)
// if (UNALIGNED_P (buffer)) {
// while (len > 64U) {
// ::memcpy(m_buffer, buffer, 64U);
// processBlock((unsigned char*)m_buffer, 64U);
// buffer += 64U;
// len -= 64U;
// }
// } else
//#endif
{
processBlock(buffer, len & ~63U);
buffer += (len & ~63U);
len &= 63U;
}
}
/* Move remaining bytes in internal buffer. */
if (len > 0U) {
unsigned int left_over = m_buflen;
::memcpy(&((char*)m_buffer)[left_over], buffer, len);
left_over += len;
if (left_over >= 64U) {
processBlock((unsigned char*)m_buffer, 64U);
left_over -= 64U;
::memcpy(m_buffer, &m_buffer[16], left_over);
}
m_buflen = left_over;
}
}
/* --- Code below is the primary difference between sha1.c and sha256.c --- */
/* SHA256 round constants */
#define K(I) roundConstants[I]
static const uint32_t roundConstants[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL,
};
/* Round functions. */
#define F2(A,B,C) ( ( A & B ) | ( C & ( A | B ) ) )
#define F1(E,F,G) ( G ^ ( E & ( F ^ G ) ) )
/* Process LEN bytes of BUFFER, accumulating context into CTX.
It is assumed that LEN % 64 == 0.
Most of this code comes from GnuPG's cipher/sha1.c. */
void CSHA256::processBlock(const unsigned char* buffer, unsigned int len)
{
assert(buffer != NULL);
const uint32_t* words = (uint32_t*)buffer;
unsigned int nwords = len / sizeof(uint32_t);
const uint32_t* endp = words + nwords;
uint32_t x[16];
uint32_t a = m_state[0];
uint32_t b = m_state[1];
uint32_t c = m_state[2];
uint32_t d = m_state[3];
uint32_t e = m_state[4];
uint32_t f = m_state[5];
uint32_t g = m_state[6];
uint32_t h = m_state[7];
/* First increment the byte count. FIPS PUB 180-2 specifies the possible
length of the file up to 2^64 bits. Here we only compute the
number of bytes. Do a double word increment. */
m_total[0] += len;
if (m_total[0] < len)
++m_total[1];
#define rol(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
#define S0(x) (rol(x,25)^rol(x,14)^(x>>3))
#define S1(x) (rol(x,15)^rol(x,13)^(x>>10))
#define SS0(x) (rol(x,30)^rol(x,19)^rol(x,10))
#define SS1(x) (rol(x,26)^rol(x,21)^rol(x,7))
#define M(I) (tm = S1(x[(I-2)&0x0f]) + x[(I-7)&0x0f] + S0(x[(I-15)&0x0f]) + x[I&0x0f], x[I&0x0f] = tm)
#define R(A,B,C,D,E,F,G,H,K,M) do { t0 = SS0(A) + F2(A,B,C); \
t1 = H + SS1(E) + F1(E,F,G) + K + M; \
D += t1; H = t0 + t1; \
} while(0)
while (words < endp) {
uint32_t tm;
uint32_t t0, t1;
/* FIXME: see sha1.c for a better implementation. */
for (unsigned int t = 0U; t < 16U; t++) {
x[t] = SWAP(*words);
words++;
}
R( a, b, c, d, e, f, g, h, K( 0), x[ 0] );
R( h, a, b, c, d, e, f, g, K( 1), x[ 1] );
R( g, h, a, b, c, d, e, f, K( 2), x[ 2] );
R( f, g, h, a, b, c, d, e, K( 3), x[ 3] );
R( e, f, g, h, a, b, c, d, K( 4), x[ 4] );
R( d, e, f, g, h, a, b, c, K( 5), x[ 5] );
R( c, d, e, f, g, h, a, b, K( 6), x[ 6] );
R( b, c, d, e, f, g, h, a, K( 7), x[ 7] );
R( a, b, c, d, e, f, g, h, K( 8), x[ 8] );
R( h, a, b, c, d, e, f, g, K( 9), x[ 9] );
R( g, h, a, b, c, d, e, f, K(10), x[10] );
R( f, g, h, a, b, c, d, e, K(11), x[11] );
R( e, f, g, h, a, b, c, d, K(12), x[12] );
R( d, e, f, g, h, a, b, c, K(13), x[13] );
R( c, d, e, f, g, h, a, b, K(14), x[14] );
R( b, c, d, e, f, g, h, a, K(15), x[15] );
R( a, b, c, d, e, f, g, h, K(16), M(16) );
R( h, a, b, c, d, e, f, g, K(17), M(17) );
R( g, h, a, b, c, d, e, f, K(18), M(18) );
R( f, g, h, a, b, c, d, e, K(19), M(19) );
R( e, f, g, h, a, b, c, d, K(20), M(20) );
R( d, e, f, g, h, a, b, c, K(21), M(21) );
R( c, d, e, f, g, h, a, b, K(22), M(22) );
R( b, c, d, e, f, g, h, a, K(23), M(23) );
R( a, b, c, d, e, f, g, h, K(24), M(24) );
R( h, a, b, c, d, e, f, g, K(25), M(25) );
R( g, h, a, b, c, d, e, f, K(26), M(26) );
R( f, g, h, a, b, c, d, e, K(27), M(27) );
R( e, f, g, h, a, b, c, d, K(28), M(28) );
R( d, e, f, g, h, a, b, c, K(29), M(29) );
R( c, d, e, f, g, h, a, b, K(30), M(30) );
R( b, c, d, e, f, g, h, a, K(31), M(31) );
R( a, b, c, d, e, f, g, h, K(32), M(32) );
R( h, a, b, c, d, e, f, g, K(33), M(33) );
R( g, h, a, b, c, d, e, f, K(34), M(34) );
R( f, g, h, a, b, c, d, e, K(35), M(35) );
R( e, f, g, h, a, b, c, d, K(36), M(36) );
R( d, e, f, g, h, a, b, c, K(37), M(37) );
R( c, d, e, f, g, h, a, b, K(38), M(38) );
R( b, c, d, e, f, g, h, a, K(39), M(39) );
R( a, b, c, d, e, f, g, h, K(40), M(40) );
R( h, a, b, c, d, e, f, g, K(41), M(41) );
R( g, h, a, b, c, d, e, f, K(42), M(42) );
R( f, g, h, a, b, c, d, e, K(43), M(43) );
R( e, f, g, h, a, b, c, d, K(44), M(44) );
R( d, e, f, g, h, a, b, c, K(45), M(45) );
R( c, d, e, f, g, h, a, b, K(46), M(46) );
R( b, c, d, e, f, g, h, a, K(47), M(47) );
R( a, b, c, d, e, f, g, h, K(48), M(48) );
R( h, a, b, c, d, e, f, g, K(49), M(49) );
R( g, h, a, b, c, d, e, f, K(50), M(50) );
R( f, g, h, a, b, c, d, e, K(51), M(51) );
R( e, f, g, h, a, b, c, d, K(52), M(52) );
R( d, e, f, g, h, a, b, c, K(53), M(53) );
R( c, d, e, f, g, h, a, b, K(54), M(54) );
R( b, c, d, e, f, g, h, a, K(55), M(55) );
R( a, b, c, d, e, f, g, h, K(56), M(56) );
R( h, a, b, c, d, e, f, g, K(57), M(57) );
R( g, h, a, b, c, d, e, f, K(58), M(58) );
R( f, g, h, a, b, c, d, e, K(59), M(59) );
R( e, f, g, h, a, b, c, d, K(60), M(60) );
R( d, e, f, g, h, a, b, c, K(61), M(61) );
R( c, d, e, f, g, h, a, b, K(62), M(62) );
R( b, c, d, e, f, g, h, a, K(63), M(63) );
a = m_state[0] += a;
b = m_state[1] += b;
c = m_state[2] += c;
d = m_state[3] += d;
e = m_state[4] += e;
f = m_state[5] += f;
g = m_state[6] += g;
h = m_state[7] += h;
}
}