/* * Copyright (C) 2012 by Ian Wraith * Copyright (C) 2015 by Jonathan Naylor G4KLX * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "cbptc19696.h" #include "chamming.h" //#include "cutils.h" #include #include #include CBPTC19696::CBPTC19696() { } CBPTC19696::~CBPTC19696() { } // The main decode function void CBPTC19696::decode(const uint8_t* in, uint8_t* out) { assert(in != NULL); assert(out != NULL); // Get the raw binary decodeExtractBinary(in); // Deinterleave decodeDeInterleave(); // Error check decodeErrorCheck(); // Extract Data decodeExtractData(out); } // The main encode function void CBPTC19696::encode(const uint8_t* in, uint8_t* out) { assert(in != NULL); assert(out != NULL); // Extract Data encodeExtractData(in); // Error check encodeErrorCheck(); // Deinterleave encodeInterleave(); // Get the raw binary encodeExtractBinary(out); } void CBPTC19696::byteToBitsBE(uint8_t byte, bool* bits) { assert(bits != NULL); bits[0U] = (byte & 0x80U) == 0x80U; bits[1U] = (byte & 0x40U) == 0x40U; bits[2U] = (byte & 0x20U) == 0x20U; bits[3U] = (byte & 0x10U) == 0x10U; bits[4U] = (byte & 0x08U) == 0x08U; bits[5U] = (byte & 0x04U) == 0x04U; bits[6U] = (byte & 0x02U) == 0x02U; bits[7U] = (byte & 0x01U) == 0x01U; } void CBPTC19696::bitsToByteBE(bool* bits, uint8_t& byte) { assert(bits != NULL); byte = bits[0U] ? 0x80U : 0x00U; byte |= bits[1U] ? 0x40U : 0x00U; byte |= bits[2U] ? 0x20U : 0x00U; byte |= bits[3U] ? 0x10U : 0x00U; byte |= bits[4U] ? 0x08U : 0x00U; byte |= bits[5U] ? 0x04U : 0x00U; byte |= bits[6U] ? 0x02U : 0x00U; byte |= bits[7U] ? 0x01U : 0x00U; } void CBPTC19696::decodeExtractBinary(const uint8_t* in) { // First block byteToBitsBE(in[0U], m_rawData + 0U); byteToBitsBE(in[1U], m_rawData + 8U); byteToBitsBE(in[2U], m_rawData + 16U); byteToBitsBE(in[3U], m_rawData + 24U); byteToBitsBE(in[4U], m_rawData + 32U); byteToBitsBE(in[5U], m_rawData + 40U); byteToBitsBE(in[6U], m_rawData + 48U); byteToBitsBE(in[7U], m_rawData + 56U); byteToBitsBE(in[8U], m_rawData + 64U); byteToBitsBE(in[9U], m_rawData + 72U); byteToBitsBE(in[10U], m_rawData + 80U); byteToBitsBE(in[11U], m_rawData + 88U); byteToBitsBE(in[12U], m_rawData + 96U); // Handle the two bits bool bits[8U]; byteToBitsBE(in[20U], bits); m_rawData[98U] = bits[6U]; m_rawData[99U] = bits[7U]; // Second block byteToBitsBE(in[21U], m_rawData + 100U); byteToBitsBE(in[22U], m_rawData + 108U); byteToBitsBE(in[23U], m_rawData + 116U); byteToBitsBE(in[24U], m_rawData + 124U); byteToBitsBE(in[25U], m_rawData + 132U); byteToBitsBE(in[26U], m_rawData + 140U); byteToBitsBE(in[27U], m_rawData + 148U); byteToBitsBE(in[28U], m_rawData + 156U); byteToBitsBE(in[29U], m_rawData + 164U); byteToBitsBE(in[30U], m_rawData + 172U); byteToBitsBE(in[31U], m_rawData + 180U); byteToBitsBE(in[32U], m_rawData + 188U); } // Deinterleave the raw data void CBPTC19696::decodeDeInterleave() { for (uint32_t i = 0U; i < 196U; i++) m_deInterData[i] = false; // The first bit is R(3) which is not used so can be ignored for (uint32_t a = 0U; a < 196U; a++) { // Calculate the interleave sequence uint32_t interleaveSequence = (a * 181U) % 196U; // Shuffle the data m_deInterData[a] = m_rawData[interleaveSequence]; } } // Check each row with a Hamming (15,11,3) code and each column with a Hamming (13,9,3) code void CBPTC19696::decodeErrorCheck() { bool fixing; uint32_t count = 0U; do { fixing = false; // Run through each of the 15 columns bool col[13U]; for (uint32_t c = 0U; c < 15U; c++) { uint32_t pos = c + 1U; for (uint32_t a = 0U; a < 13U; a++) { col[a] = m_deInterData[pos]; pos = pos + 15U; } if (CHamming::decode1393(col)) { uint32_t pos = c + 1U; for (uint32_t a = 0U; a < 13U; a++) { m_deInterData[pos] = col[a]; pos = pos + 15U; } fixing = true; } } // Run through each of the 9 rows containing data for (uint32_t r = 0U; r < 9U; r++) { uint32_t pos = (r * 15U) + 1U; if (CHamming::decode15113_2(m_deInterData + pos)) fixing = true; } count++; } while (fixing && count < 5U); } // Extract the 96 bits of payload void CBPTC19696::decodeExtractData(uint8_t* data) { bool bData[96U]; uint32_t pos = 0U; for(uint32_t a = 4U; a <= 11U; a++, pos++){ bData[pos] = m_deInterData[a]; } for(uint32_t a = 16U; a <= 26U; a++, pos++){ bData[pos] = m_deInterData[a]; } for(uint32_t a = 31U; a <= 41U; a++, pos++){ bData[pos] = m_deInterData[a]; } for(uint32_t a = 46U; a <= 56U; a++, pos++){ bData[pos] = m_deInterData[a]; } for(uint32_t a = 61U; a <= 71U; a++, pos++){ bData[pos] = m_deInterData[a]; } for(uint32_t a = 76U; a <= 86U; a++, pos++){ bData[pos] = m_deInterData[a]; } for(uint32_t a = 91U; a <= 101U; a++, pos++){ bData[pos] = m_deInterData[a]; } for(uint32_t a = 106U; a <= 116U; a++, pos++){ bData[pos] = m_deInterData[a]; } for(uint32_t a = 121U; a <= 131U; a++, pos++){ bData[pos] = m_deInterData[a]; } bitsToByteBE(bData + 0U, data[0U]); bitsToByteBE(bData + 8U, data[1U]); bitsToByteBE(bData + 16U, data[2U]); bitsToByteBE(bData + 24U, data[3U]); bitsToByteBE(bData + 32U, data[4U]); bitsToByteBE(bData + 40U, data[5U]); bitsToByteBE(bData + 48U, data[6U]); bitsToByteBE(bData + 56U, data[7U]); bitsToByteBE(bData + 64U, data[8U]); bitsToByteBE(bData + 72U, data[9U]); bitsToByteBE(bData + 80U, data[10U]); bitsToByteBE(bData + 88U, data[11U]); } // Extract the 96 bits of payload void CBPTC19696::encodeExtractData(const uint8_t* in) { bool bData[96U]; byteToBitsBE(in[0U], bData + 0U); byteToBitsBE(in[1U], bData + 8U); byteToBitsBE(in[2U], bData + 16U); byteToBitsBE(in[3U], bData + 24U); byteToBitsBE(in[4U], bData + 32U); byteToBitsBE(in[5U], bData + 40U); byteToBitsBE(in[6U], bData + 48U); byteToBitsBE(in[7U], bData + 56U); byteToBitsBE(in[8U], bData + 64U); byteToBitsBE(in[9U], bData + 72U); byteToBitsBE(in[10U], bData + 80U); byteToBitsBE(in[11U], bData + 88U); for (uint32_t i = 0U; i < 196U; i++) m_deInterData[i] = false; uint32_t pos = 0U; for (uint32_t a = 4U; a <= 11U; a++, pos++) m_deInterData[a] = bData[pos]; for (uint32_t a = 16U; a <= 26U; a++, pos++) m_deInterData[a] = bData[pos]; for (uint32_t a = 31U; a <= 41U; a++, pos++) m_deInterData[a] = bData[pos]; for (uint32_t a = 46U; a <= 56U; a++, pos++) m_deInterData[a] = bData[pos]; for (uint32_t a = 61U; a <= 71U; a++, pos++) m_deInterData[a] = bData[pos]; for (uint32_t a = 76U; a <= 86U; a++, pos++) m_deInterData[a] = bData[pos]; for (uint32_t a = 91U; a <= 101U; a++, pos++) m_deInterData[a] = bData[pos]; for (uint32_t a = 106U; a <= 116U; a++, pos++) m_deInterData[a] = bData[pos]; for (uint32_t a = 121U; a <= 131U; a++, pos++) m_deInterData[a] = bData[pos]; } // Check each row with a Hamming (15,11,3) code and each column with a Hamming (13,9,3) code void CBPTC19696::encodeErrorCheck() { // Run through each of the 9 rows containing data for (uint32_t r = 0U; r < 9U; r++) { uint32_t pos = (r * 15U) + 1U; CHamming::encode15113_2(m_deInterData + pos); } // Run through each of the 15 columns bool col[13U]; for (uint32_t c = 0U; c < 15U; c++) { uint32_t pos = c + 1U; for (uint32_t a = 0U; a < 13U; a++) { col[a] = m_deInterData[pos]; pos = pos + 15U; } CHamming::encode1393(col); pos = c + 1U; for (uint32_t a = 0U; a < 13U; a++) { m_deInterData[pos] = col[a]; pos = pos + 15U; } } } // Interleave the raw data void CBPTC19696::encodeInterleave() { for (uint32_t i = 0U; i < 196U; i++) m_rawData[i] = false; // The first bit is R(3) which is not used so can be ignored for (uint32_t a = 0U; a < 196U; a++) { // Calculate the interleave sequence uint32_t interleaveSequence = (a * 181U) % 196U; // Unshuffle the data m_rawData[interleaveSequence] = m_deInterData[a]; } } void CBPTC19696::encodeExtractBinary(uint8_t* data) { // First block bitsToByteBE(m_rawData + 0U, data[0U]); bitsToByteBE(m_rawData + 8U, data[1U]); bitsToByteBE(m_rawData + 16U, data[2U]); bitsToByteBE(m_rawData + 24U, data[3U]); bitsToByteBE(m_rawData + 32U, data[4U]); bitsToByteBE(m_rawData + 40U, data[5U]); bitsToByteBE(m_rawData + 48U, data[6U]); bitsToByteBE(m_rawData + 56U, data[7U]); bitsToByteBE(m_rawData + 64U, data[8U]); bitsToByteBE(m_rawData + 72U, data[9U]); bitsToByteBE(m_rawData + 80U, data[10U]); bitsToByteBE(m_rawData + 88U, data[11U]); // Handle the two bits uint8_t byte; bitsToByteBE(m_rawData + 96U, byte); data[12U] = (data[12U] & 0x3FU) | ((byte >> 0) & 0xC0U); data[20U] = (data[20U] & 0xFCU) | ((byte >> 4) & 0x03U); // Second block bitsToByteBE(m_rawData + 100U, data[21U]); bitsToByteBE(m_rawData + 108U, data[22U]); bitsToByteBE(m_rawData + 116U, data[23U]); bitsToByteBE(m_rawData + 124U, data[24U]); bitsToByteBE(m_rawData + 132U, data[25U]); bitsToByteBE(m_rawData + 140U, data[26U]); bitsToByteBE(m_rawData + 148U, data[27U]); bitsToByteBE(m_rawData + 156U, data[28U]); bitsToByteBE(m_rawData + 164U, data[29U]); bitsToByteBE(m_rawData + 172U, data[30U]); bitsToByteBE(m_rawData + 180U, data[31U]); bitsToByteBE(m_rawData + 188U, data[32U]); }