#include "SX1278Better.h" SX1278Better::SX1278Better(Module* mod) : SX127x(mod) { } int16_t SX1278Better::begin(float freq, float bw, uint8_t sf, uint8_t cr, uint8_t syncWord, int8_t power, uint16_t preambleLength, uint8_t gain) { // execute common part int16_t state = SX127x::begin(SX1278_CHIP_VERSION, syncWord, preambleLength); RADIOLIB_ASSERT(state); // configure publicly accessible settings state = setBandwidth(bw); RADIOLIB_ASSERT(state); state = setFrequency(freq); RADIOLIB_ASSERT(state); state = setSpreadingFactor(sf); RADIOLIB_ASSERT(state); state = setCodingRate(cr); RADIOLIB_ASSERT(state); state = setOutputPower(power); RADIOLIB_ASSERT(state); state = setGain(gain); RADIOLIB_ASSERT(state); return(state); } int16_t SX1278Better::beginFSK(float freq, float br, float freqDev, float rxBw, int8_t power, uint16_t preambleLength, bool enableOOK) { // execute common part int16_t state = SX127x::beginFSK(SX1278_CHIP_VERSION, br, freqDev, rxBw, preambleLength, enableOOK); RADIOLIB_ASSERT(state); // configure settings not accessible by API state = configFSK(); RADIOLIB_ASSERT(state); // configure publicly accessible settings state = setFrequency(freq); RADIOLIB_ASSERT(state); state = setOutputPower(power); RADIOLIB_ASSERT(state); state = setDataShaping(RADIOLIB_SHAPING_NONE); RADIOLIB_ASSERT(state); return(state); } void SX1278Better::reset() { Module::pinMode(_mod->getRst(), OUTPUT); Module::digitalWrite(_mod->getRst(), LOW); Module::delay(1); Module::digitalWrite(_mod->getRst(), HIGH); Module::delay(5); } int16_t SX1278Better::setFrequency(float freq) { RADIOLIB_CHECK_RANGE(freq, 137.0, 525.0, ERR_INVALID_FREQUENCY); // SX1276/77/78 Errata fixes if(getActiveModem() == SX127X_LORA) { // sensitivity optimization for 500kHz bandwidth // see SX1276/77/78 Errata, section 2.1 for details if(abs(_bw - 500.0) <= 0.001) { if((freq >= 862.0) && (freq <= 1020.0)) { _mod->SPIwriteRegister(0x36, 0x02); _mod->SPIwriteRegister(0x3a, 0x64); } else if((freq >= 410.0) && (freq <= 525.0)) { _mod->SPIwriteRegister(0x36, 0x02); _mod->SPIwriteRegister(0x3a, 0x7F); } } // mitigation of receiver spurious response // see SX1276/77/78 Errata, section 2.3 for details if(abs(_bw - 7.8) <= 0.001) { _mod->SPIsetRegValue(0x31, 0b0000000, 7, 7); _mod->SPIsetRegValue(0x2F, 0x48); _mod->SPIsetRegValue(0x30, 0x00); freq += 7.8; } else if(abs(_bw - 10.4) <= 0.001) { _mod->SPIsetRegValue(0x31, 0b0000000, 7, 7); _mod->SPIsetRegValue(0x2F, 0x44); _mod->SPIsetRegValue(0x30, 0x00); freq += 10.4; } else if(abs(_bw - 15.6) <= 0.001) { _mod->SPIsetRegValue(0x31, 0b0000000, 7, 7); _mod->SPIsetRegValue(0x2F, 0x44); _mod->SPIsetRegValue(0x30, 0x00); freq += 15.6; } else if(abs(_bw - 20.8) <= 0.001) { _mod->SPIsetRegValue(0x31, 0b0000000, 7, 7); _mod->SPIsetRegValue(0x2F, 0x44); _mod->SPIsetRegValue(0x30, 0x00); freq += 20.8; } else if(abs(_bw - 31.25) <= 0.001) { _mod->SPIsetRegValue(0x31, 0b0000000, 7, 7); _mod->SPIsetRegValue(0x2F, 0x44); _mod->SPIsetRegValue(0x30, 0x00); freq += 31.25; } else if(abs(_bw - 41.7) <= 0.001) { _mod->SPIsetRegValue(0x31, 0b0000000, 7, 7); _mod->SPIsetRegValue(0x2F, 0x44); _mod->SPIsetRegValue(0x30, 0x00); freq += 41.7; } else if(abs(_bw - 62.5) <= 0.001) { _mod->SPIsetRegValue(0x31, 0b0000000, 7, 7); _mod->SPIsetRegValue(0x2F, 0x40); _mod->SPIsetRegValue(0x30, 0x00); } else if(abs(_bw - 125.0) <= 0.001) { _mod->SPIsetRegValue(0x31, 0b0000000, 7, 7); _mod->SPIsetRegValue(0x2F, 0x40); _mod->SPIsetRegValue(0x30, 0x00); } else if(abs(_bw - 250.0) <= 0.001) { _mod->SPIsetRegValue(0x31, 0b0000000, 7, 7); _mod->SPIsetRegValue(0x2F, 0x40); _mod->SPIsetRegValue(0x30, 0x00); } else if(abs(_bw - 500.0) <= 0.001) { _mod->SPIsetRegValue(0x31, 0b1000000, 7, 7); } } // set frequency and if successful, save the new setting int16_t state = SX127x::setFrequencyRaw(freq); if(state == ERR_NONE) { SX127x::_freq = freq; } return(state); } int16_t SX1278Better::setBandwidth(float bw) { // check active modem if(getActiveModem() != SX127X_LORA) { return(ERR_WRONG_MODEM); } uint8_t newBandwidth; // check allowed bandwidth values if(abs(bw - 7.8) <= 0.001) { newBandwidth = SX1278_BW_7_80_KHZ; } else if(abs(bw - 10.4) <= 0.001) { newBandwidth = SX1278_BW_10_40_KHZ; } else if(abs(bw - 15.6) <= 0.001) { newBandwidth = SX1278_BW_15_60_KHZ; } else if(abs(bw - 20.8) <= 0.001) { newBandwidth = SX1278_BW_20_80_KHZ; } else if(abs(bw - 31.25) <= 0.001) { newBandwidth = SX1278_BW_31_25_KHZ; } else if(abs(bw - 41.7) <= 0.001) { newBandwidth = SX1278_BW_41_70_KHZ; } else if(abs(bw - 62.5) <= 0.001) { newBandwidth = SX1278_BW_62_50_KHZ; } else if(abs(bw - 125.0) <= 0.001) { newBandwidth = SX1278_BW_125_00_KHZ; } else if(abs(bw - 250.0) <= 0.001) { newBandwidth = SX1278_BW_250_00_KHZ; } else if(abs(bw - 500.0) <= 0.001) { newBandwidth = SX1278_BW_500_00_KHZ; } else { return(ERR_INVALID_BANDWIDTH); } // set bandwidth and if successful, save the new setting int16_t state = SX1278::setBandwidthRaw(newBandwidth); if(state == ERR_NONE) { SX127x::_bw = bw; // calculate symbol length and set low data rate optimization, if auto-configuration is enabled if(_ldroAuto) { float symbolLength = (float)(uint32_t(1) << SX127x::_sf) / (float)SX127x::_bw; RADIOLIB_DEBUG_PRINT("Symbol length: "); RADIOLIB_DEBUG_PRINT(symbolLength); RADIOLIB_DEBUG_PRINTLN(" ms"); if(symbolLength >= 16.0) { state = _mod->SPIsetRegValue(SX1278_REG_MODEM_CONFIG_3, SX1278_LOW_DATA_RATE_OPT_ON, 3, 3); } else { state = _mod->SPIsetRegValue(SX1278_REG_MODEM_CONFIG_3, SX1278_LOW_DATA_RATE_OPT_OFF, 3, 3); } } } return(state); } int16_t SX1278Better::setSpreadingFactor(uint8_t sf) { // check active modem if(getActiveModem() != SX127X_LORA) { return(ERR_WRONG_MODEM); } uint8_t newSpreadingFactor; // check allowed spreading factor values switch(sf) { case 6: newSpreadingFactor = SX127X_SF_6; break; case 7: newSpreadingFactor = SX127X_SF_7; break; case 8: newSpreadingFactor = SX127X_SF_8; break; case 9: newSpreadingFactor = SX127X_SF_9; break; case 10: newSpreadingFactor = SX127X_SF_10; break; case 11: newSpreadingFactor = SX127X_SF_11; break; case 12: newSpreadingFactor = SX127X_SF_12; break; default: return(ERR_INVALID_SPREADING_FACTOR); } // set spreading factor and if successful, save the new setting int16_t state = SX1278::setSpreadingFactorRaw(newSpreadingFactor); if(state == ERR_NONE) { SX127x::_sf = sf; // calculate symbol length and set low data rate optimization, if auto-configuration is enabled if(_ldroAuto) { float symbolLength = (float)(uint32_t(1) << SX127x::_sf) / (float)SX127x::_bw; RADIOLIB_DEBUG_PRINT("Symbol length: "); RADIOLIB_DEBUG_PRINT(symbolLength); RADIOLIB_DEBUG_PRINTLN(" ms"); if(symbolLength >= 16.0) { state = _mod->SPIsetRegValue(SX1278_REG_MODEM_CONFIG_3, SX1278_LOW_DATA_RATE_OPT_ON, 3, 3); } else { state = _mod->SPIsetRegValue(SX1278_REG_MODEM_CONFIG_3, SX1278_LOW_DATA_RATE_OPT_OFF, 3, 3); } } } return(state); } int16_t SX1278Better::setCodingRate(uint8_t cr) { // check active modem if(getActiveModem() != SX127X_LORA) { return(ERR_WRONG_MODEM); } uint8_t newCodingRate; // check allowed coding rate values switch(cr) { case 5: newCodingRate = SX1278_CR_4_5; break; case 6: newCodingRate = SX1278_CR_4_6; break; case 7: newCodingRate = SX1278_CR_4_7; break; case 8: newCodingRate = SX1278_CR_4_8; break; default: return(ERR_INVALID_CODING_RATE); } // set coding rate and if successful, save the new setting int16_t state = SX1278::setCodingRateRaw(newCodingRate); if(state == ERR_NONE) { SX127x::_cr = cr; } return(state); } int16_t SX1278Better::setOutputPower(int8_t power) { // check allowed power range if(!(((power >= -3) && (power <= 17)) || (power == 20))) { return(ERR_INVALID_OUTPUT_POWER); } // set mode to standby int16_t state = SX127x::standby(); // set output power if(power < 2) { // power is less than 2 dBm, enable PA on RFO state |= _mod->SPIsetRegValue(SX127X_REG_PA_CONFIG, SX127X_PA_SELECT_RFO, 7, 7); state |= _mod->SPIsetRegValue(SX127X_REG_PA_CONFIG, SX1278_LOW_POWER | (power + 3), 6, 0); state |= _mod->SPIsetRegValue(SX1278_REG_PA_DAC, SX127X_PA_BOOST_OFF, 2, 0); } else if(power <= 17) { // power is 2 - 17 dBm, enable PA1 + PA2 on PA_BOOST state |= _mod->SPIsetRegValue(SX127X_REG_PA_CONFIG, SX127X_PA_SELECT_BOOST, 7, 7); state |= _mod->SPIsetRegValue(SX127X_REG_PA_CONFIG, SX1278_MAX_POWER | (power - 2), 6, 0); state |= _mod->SPIsetRegValue(SX1278_REG_PA_DAC, SX127X_PA_BOOST_OFF, 2, 0); } else if(power == 20) { // power is 20 dBm, enable PA1 + PA2 on PA_BOOST and enable high power mode state |= _mod->SPIsetRegValue(SX127X_REG_PA_CONFIG, SX127X_PA_SELECT_BOOST, 7, 7); state |= _mod->SPIsetRegValue(SX127X_REG_PA_CONFIG, SX1278_MAX_POWER | (power - 5), 6, 0); state |= _mod->SPIsetRegValue(SX1278_REG_PA_DAC, SX127X_PA_BOOST_ON, 2, 0); } return(state); } int16_t SX1278Better::setGain(uint8_t gain) { // check active modem if(getActiveModem() != SX127X_LORA) { return(ERR_WRONG_MODEM); } // check allowed range if(gain > 6) { return(ERR_INVALID_GAIN); } // set mode to standby int16_t state = SX127x::standby(); // set gain if(gain == 0) { // gain set to 0, enable AGC loop state |= _mod->SPIsetRegValue(SX1278_REG_MODEM_CONFIG_3, SX1278_AGC_AUTO_ON, 2, 2); } else { state |= _mod->SPIsetRegValue(SX1278_REG_MODEM_CONFIG_3, SX1278_AGC_AUTO_OFF, 2, 2); state |= _mod->SPIsetRegValue(SX127X_REG_LNA, (gain << 5) | SX127X_LNA_BOOST_ON); } return(state); } int16_t SX1278Better::setDataShaping(uint8_t sh) { // check active modem if(getActiveModem() != SX127X_FSK_OOK) { return(ERR_WRONG_MODEM); } // check modulation if(SX127x::_ook) { return(ERR_INVALID_MODULATION); } // set mode to standby int16_t state = SX127x::standby(); RADIOLIB_ASSERT(state); // set data shaping switch(sh) { case RADIOLIB_SHAPING_NONE: return(_mod->SPIsetRegValue(SX127X_REG_PA_RAMP, SX1278_NO_SHAPING, 6, 5)); case RADIOLIB_SHAPING_0_3: return(_mod->SPIsetRegValue(SX127X_REG_PA_RAMP, SX1278_FSK_GAUSSIAN_0_3, 6, 5)); case RADIOLIB_SHAPING_0_5: return(_mod->SPIsetRegValue(SX127X_REG_PA_RAMP, SX1278_FSK_GAUSSIAN_0_5, 6, 5)); case RADIOLIB_SHAPING_1_0: return(_mod->SPIsetRegValue(SX127X_REG_PA_RAMP, SX1278_FSK_GAUSSIAN_1_0, 6, 5)); default: return(ERR_INVALID_DATA_SHAPING); } } int16_t SX1278Better::setDataShapingOOK(uint8_t sh) { // check active modem if(getActiveModem() != SX127X_FSK_OOK) { return(ERR_WRONG_MODEM); } // check modulation if(!SX127x::_ook) { return(ERR_INVALID_MODULATION); } // set mode to standby int16_t state = SX127x::standby(); // set data shaping switch(sh) { case 0: state |= _mod->SPIsetRegValue(SX127X_REG_PA_RAMP, SX1278_NO_SHAPING, 6, 5); break; case 1: state |= _mod->SPIsetRegValue(SX127X_REG_PA_RAMP, SX1278_OOK_FILTER_BR, 6, 5); break; case 2: state |= _mod->SPIsetRegValue(SX127X_REG_PA_RAMP, SX1278_OOK_FILTER_2BR, 6, 5); break; default: return(ERR_INVALID_DATA_SHAPING); } return(state); } float SX1278Better::getRSSI() { if(getActiveModem() == SX127X_LORA) { // for LoRa, get RSSI of the last packet float lastPacketRSSI; // RSSI calculation uses different constant for low-frequency and high-frequency ports if(_freq < 868.0) { lastPacketRSSI = -164 + _mod->SPIgetRegValue(SX127X_REG_PKT_RSSI_VALUE); } else { lastPacketRSSI = -157 + _mod->SPIgetRegValue(SX127X_REG_PKT_RSSI_VALUE); } // spread-spectrum modulation signal can be received below noise floor // check last packet SNR and if it's less than 0, add it to reported RSSI to get the correct value float lastPacketSNR = SX127x::getSNR(); if(lastPacketSNR < 0.0) { lastPacketRSSI += lastPacketSNR; } return(lastPacketRSSI); } else { // enable listen mode startReceive(); // read the value for FSK float rssi = (float)_mod->SPIgetRegValue(SX127X_REG_RSSI_VALUE_FSK) / -2.0; // set mode back to standby standby(); // return the value return(rssi); } } int16_t SX1278Better::setCRC(bool enableCRC) { if(getActiveModem() == SX127X_LORA) { // set LoRa CRC SX127x::_crcEnabled = enableCRC; if(enableCRC) { return(_mod->SPIsetRegValue(SX127X_REG_MODEM_CONFIG_2, SX1278_RX_CRC_MODE_ON, 2, 2)); } else { return(_mod->SPIsetRegValue(SX127X_REG_MODEM_CONFIG_2, SX1278_RX_CRC_MODE_OFF, 2, 2)); } } else { // set FSK CRC if(enableCRC) { return(_mod->SPIsetRegValue(SX127X_REG_PACKET_CONFIG_1, SX127X_CRC_ON, 4, 4)); } else { return(_mod->SPIsetRegValue(SX127X_REG_PACKET_CONFIG_1, SX127X_CRC_OFF, 4, 4)); } } } int16_t SX1278Better::forceLDRO(bool enable) { if(getActiveModem() != SX127X_LORA) { return(ERR_WRONG_MODEM); } _ldroAuto = false; if(enable) { return(_mod->SPIsetRegValue(SX1278_REG_MODEM_CONFIG_3, SX1278_LOW_DATA_RATE_OPT_ON, 3, 3)); } else { return(_mod->SPIsetRegValue(SX1278_REG_MODEM_CONFIG_3, SX1278_LOW_DATA_RATE_OPT_OFF, 3, 3)); } } int16_t SX1278Better::autoLDRO() { if(getActiveModem() != SX127X_LORA) { return(ERR_WRONG_MODEM); } _ldroAuto = true; return(ERR_NONE); } int16_t SX1278Better::implicitHeader(size_t len) { return(setHeaderType(SX1278_HEADER_IMPL_MODE, len)); } int16_t SX1278Better::explicitHeader() { return(setHeaderType(SX1278_HEADER_EXPL_MODE)); } int16_t SX1278Better::setBandwidthRaw(uint8_t newBandwidth) { // set mode to standby int16_t state = SX127x::standby(); // write register state |= _mod->SPIsetRegValue(SX127X_REG_MODEM_CONFIG_1, newBandwidth, 7, 4); return(state); } int16_t SX1278Better::setSpreadingFactorRaw(uint8_t newSpreadingFactor) { // set mode to standby int16_t state = SX127x::standby(); // write registers if(newSpreadingFactor == SX127X_SF_6) { state |= _mod->SPIsetRegValue(SX127X_REG_MODEM_CONFIG_1, SX1278_HEADER_IMPL_MODE, 0, 0); state |= _mod->SPIsetRegValue(SX127X_REG_MODEM_CONFIG_2, SX127X_SF_6 | SX127X_TX_MODE_SINGLE | (SX127x::_crcEnabled ? SX1278_RX_CRC_MODE_ON : SX1278_RX_CRC_MODE_OFF), 7, 2); state |= _mod->SPIsetRegValue(SX127X_REG_DETECT_OPTIMIZE, SX127X_DETECT_OPTIMIZE_SF_6, 2, 0); state |= _mod->SPIsetRegValue(SX127X_REG_DETECTION_THRESHOLD, SX127X_DETECTION_THRESHOLD_SF_6); } else { state |= _mod->SPIsetRegValue(SX127X_REG_MODEM_CONFIG_1, SX1278_HEADER_EXPL_MODE, 0, 0); state |= _mod->SPIsetRegValue(SX127X_REG_MODEM_CONFIG_2, newSpreadingFactor | SX127X_TX_MODE_SINGLE | (SX127x::_crcEnabled ? SX1278_RX_CRC_MODE_ON : SX1278_RX_CRC_MODE_OFF), 7, 2); state |= _mod->SPIsetRegValue(SX127X_REG_DETECT_OPTIMIZE, SX127X_DETECT_OPTIMIZE_SF_7_12, 2, 0); state |= _mod->SPIsetRegValue(SX127X_REG_DETECTION_THRESHOLD, SX127X_DETECTION_THRESHOLD_SF_7_12); } return(state); } int16_t SX1278Better::setCodingRateRaw(uint8_t newCodingRate) { // set mode to standby int16_t state = SX127x::standby(); // write register state |= _mod->SPIsetRegValue(SX127X_REG_MODEM_CONFIG_1, newCodingRate, 3, 1); return(state); } int16_t SX1278Better::setHeaderType(uint8_t headerType, size_t len) { // check active modem if(getActiveModem() != SX127X_LORA) { return(ERR_WRONG_MODEM); } // set requested packet mode int16_t state = _mod->SPIsetRegValue(SX127X_REG_MODEM_CONFIG_1, headerType, 0, 0); RADIOLIB_ASSERT(state); // set length to register state = _mod->SPIsetRegValue(SX127X_REG_PAYLOAD_LENGTH, len); RADIOLIB_ASSERT(state); // update cached value _packetLength = len; return(state); } int16_t SX1278Better::configFSK() { // configure common registers int16_t state = SX127x::configFSK(); RADIOLIB_ASSERT(state); // set fast PLL hop state = _mod->SPIsetRegValue(SX1278_REG_PLL_HOP, SX127X_FAST_HOP_ON, 7, 7); return(state); } #endif